Аминокислоты в продуктах. Каким продуктами, богатыми аминокислотами, стоит обогатить свой рацион

Аминокислоты являются важнейшими для организма органическими соединениями, из которых формируются молекулы белка. Давайте разберемся, какие 20 аминокислот известны, как они представлены в таблице и какова их классификация.

Классификация

Все аминокислоты делятся на две группы:

  • незаменимые или эссенциальные. Это те аминокислоты, которые организм человека не может вырабатывать самостоятельно. Они поступают к нам с пищей при рациональном рационе;
  • заменимые. Их организм синтезирует самостоятельно из тех веществ, которые поступают с едой. Но, не стоит их недооценивать, поэтому желательно, чтобы они тоже поступали в организм с продуктами питания.

Для удобства пользования составлена таблица аминокислот, по которой легко определить, сколько незаменимых попадет в организм. Для простоты есть показатели в % и в граммах.

Спортсмены всё чаще для достижения и улучшения своих результатов пользуются спортивным питанием. К одному из самых эффективных комплексов можно отнести и AAKG от компании Пьюрпротеин.

Заменимые аминокислоты

К данному виду относятся:

  • аланин. Он является источником поступления энергии в клетки организма и позволяет ускорить вывод токсинов из печени;
  • аргинин. Позволяет нормализовать работу печени, быстро восстанавливать мышцы, укрепить иммунную систему;
  • аспарагин. Действие аналогично аспарагиновой кислоте;
  • аспарагиновая кислота. Позволяет нормализовать процессы обмена, активизировать энергетический синтез, а также обеспечивает поддержку нервной системы.
  • цистеин. Он участвует в нормализации состояния волос, а также ногтей и кожного покрова. Помогает облегчить симптомы рака, бронхита.
  • глютаминовая кислота. Действие аналогично глюматину.
  • . Эффективно осуществляет вывод токсинов из печени, принимает участие в росте мышц. Добавляет спортсмену силу, выносливость, а также энергию.
  • глицин. Он осуществляет восстановление нормальной работоспособности нервной системы.
  • пролин. Эта аминокислота улучшает состояние кожного покрова человека;
  • серин. Наполняет клетки организма энергией.
  • тирозин. Повышает мозговую деятельность, участвует в формировании мышечного белка.

Таблица аминокислот, включающая перечень всех заменимых и незаменимых — это как настольная книга для спортсменов.

Важно! Нехватка этих аминокислот может привести тому, что организм начнет их восполнять за счет мышечной массы, что для бодибилдера и других спортсменов недопустимо.

Незаменимые аминокислоты

К ним относятся:

  • гистидин. Он присутствует в организме человека и выполняет функции по участию в создании кровяных телец. Он поистине считается основой иммунной системы.

Важно! Данная аминокислота очень быстро расходуется, поэтому требуется постоянное ее восполнение.

  • изолейцин. Его приоритетной функцией является повышение выносливости, а также восстановление энергии;
  • лейцин. Главная аминокислота для организма человека, которая участвует в регенерации волокон мышц. Она позволяет остановить катаболизм. Лейцин помогает регулировать уровень сахара, сжигать жировые отложения;
  • лизин. Обеспечивают борьбу организма с вирусными болезнями;
  • метионин. Помогает бороться с жиром. Улучшает выносливость, а также силу;
  • фенилаланин. Приоритетным направлением аминокислоты является нормализация работы нервной системы;
  • треонин. Эта аминокислота нормализует белковый обмен и стимулирует развитие мышц;
  • триптофан. Функции: нормализация давления, улучшение сна;
  • валин. Обеспечивает регенерацию тканей, насыщает организм энергией.

Заменимые и незаменимые аминокислоты, таблица которых представлена в статье, будет служить настольной книгой не только для спортсмена, но и для людей, заботящихся о своем здоровье.

Энергоемкий глютамин в бодибилдинге поддерживает иммунную систему спортсмена, участвует в пищеварительных и процессах формирования тканей мышц, обменных процессах. Л-глютамин предотвращает процесс разрушения мышц у бодибилдера во время активного тренинга с применением большого веса.

Аминокислоты и продукты

Не обязательно в виде спортивного питания. Это действительно так. Аминокислоты в продуктах присутствуют, но просто не всегда в достаточном количестве. Давайте разберемся, в каких продуктах содержатся 20 незаменимых и заменимых аминокислот в соотношении 11 к 9, соответственно.

Например, творог содержит все незаменимые аминокислоты. Его часто употребляют спортсмены в качестве добавки. Незаменимые аминокислоты в растительной пище — сое, картофеле — тоже не редкость.

Часто у спортсменов возникает вопрос: какие продукты содержат больше незаменимых аминокислот? Это не случайно, ведь насыщая организм в полной мере, добиться результате будет проще. Например, в мясе, твороге, рыбе, орехах достаточно большой процент содержания полезных для человека аминокислот.

Важно! Следует обращать внимание на количество аминокислот в продуктах, таблица поможет разобраться во всех тонкостях. Правильное питание и спорт — вещи неразделимые.

Аминокислоты имеют большое значение для человека, а особенно для спортсмена. Они могут употребляться в виде порошков, капсул, таблеток. Продукты, богатые аминокислотами, помогут спортсменам добиться хороших результатов. Таблица поможет сориентироваться.

Сиртуин

Белок сиртуин (от англ. Silent Information Regulator Transcript (SIRT) – это NAD+ зависимые ферменты, чувствительные к клеточному коэффициенту NAD + / NADH и, таким образом, к энергетическому статусу клетки. Из них SIRT1 является гистондеацетилазой, которая может изменять сигнализацию ядерных белков p53 (транскрипционный фактор, регулирующий клеточный цикл), NF-kB (ядерный фактор «каппа-би») и FOXO (транскрипционный факторы семейства forkhead box класса О) и может вызвать митохондриальный фактор биогенеза PGC-1α. Считается, что активация SIRT1 (чаще всего ресвератрол) положительно влияет на продолжительность жизни. Исследования на крысах показали, что лейцин обусловливает полезные свойства молочных белков, и это положительно сказывается на продолжительности жизни, укреплении здоровья и снижает риск преждевременной смерти . Результаты данных сыворотки крови пациентов, которые потребляли большое количество молочных продуктов, показали, что такая диета повышает активность SIRT1 на 13% (жировая ткань) и 43% (мышечная ткань). Оба метаболита лейцина (альфа-кетоизокапроновая кислота и гидроксиметилбутират моногидрат (HMB) являются активаторами SIRT1 в диапазоне 30-100%, что сравнимо с эффективностью ресвератрола (2-10мкM), но требует более высокой концентрации (0,5 мМ). Было отмечено, что митохондриальный биогенез и инкубация лейцина происходит в жировых и мышечных клетках, а разрушение SIRT1 уменьшает (но не устраняет) лейцин-индуцированный митохондриальный биогенез. Метаболиты лейцина способны стимулировать активность SIRT1, и этот механизм лежит в основе митохондриального биогенеза. Данный механизм имеет умеренную силу действия.

Взаимодействие с метаболизмом глюкозы

Усвоение глюкозы

Лейцин может способствовать активации инсулин-индуцированной протеинкиназы В (Akt), но для того чтобы сначала ослабить и ингибировать ее, необходима фосфоинозитол-3-киназа PI3K. Только так лейцин сохраняет инсулин-индуцированную активацию Akt). Так как лейцин также стимулирует секрецию инсулина из поджелудочной железы (инсулин затем активирует PI3K), в сущности это не имеет практического значения. В условиях, когда инсулин отсутствует, 2 мМ лейцина и (в меньшей степени) его метаболит α-Кетоизокапроат, видимо, способствуют поглощению глюкозы через PI3K / aPKC (атипичная протеинкиназа С ) и независимо от mTOR (блокирование MTOR не влияет на производимый эффект). В этом исследовании стимуляция составляет лишь 2-2.5мМ для 15-45 минут (сопротивление вырабатывается при 60 мин) и по силе сопоставима с физиологическими концентрациями базального инсулина, но на 50% меньшей силой (100 нМ инсулина). Этот механизм действия аналогичен механизму действия изолейцина и имеет похожую силу. Тем не менее, лейцин также может помешать клеточному всасыванию глюкозы, что, как полагают, связано с активацией передачи сигнала mTOR, который подавляет сигнализацию АМФ-зависимой киназы (AMPK) (сигнализация AMPK опосредует поглощение глюкозы в периоды низкой клеточной энергии и физических упражнений ) и действует вместе с сигнализацией mTOR, влияющей на киназу рибосомного белка S6 (S6K). Передача сигнала с помощью MTOR / S6K вызывает деградацию IRS-1 (первый белок, который несет «сигнал» инсулин-индуцированного эффекта), посредством активации протеасомной деградации IRS-1 или непосредственным связыванием с IRS-1. Это формирует негативную замкнутую систему управления с обратной связью сигнализации инсулина. Минимизирование негативных последствий для IRS-1 способствует лейцин-индуцированному всасыванию глюкозы, и эта отрицательная обратная связь объясняет, почему глюкоза всасывается в течение 45-60 минут, а затем внезапно ингибируется. Так как изолейцин не так сильно влияет на активацию mTOR и, таким образом, это путь отрицательной обратной связи, именно изолейцин обеспечивает существенное всасывание глюкозы в мышечных клетках. Изначально лейцин способствует поглощению глюкозы в мышечных клетках в течение приблизительно 45 минут, а затем процесс резко прекращается, что несколько снижает общий эффект. Это внезапное прекращение является отрицательной обратной связью, что обычно происходит после активации MTOR. Изолейцин лучше, чем лейцин, содействует поглощению глюкозы из-за меньшей активации mTOR.

Секреция инсулина

Лейцин способен индуцировать секрецию инсулина из поджелудочной железы с помощью своего метаболита КИК. Это выделение инсулина подавляется другими АРЦ и двумя подобными аминокислотами: норвалином и норлейцином. Лейцин участвует в индукции секреции инсулина либо как добавка, либо в комбинации с глюкозой (например, при приеме лейцина и глюкозы соответственно наблюдается увеличение на 170% и на 240%, а при приеме комбинации наблюдается увеличение до 450%). Несмотря на сопоставимый потенциал лейцина и йохимбина, они не сочетаются из-за их параллельных механизмов действия. Лейцин, как известно, стимулируют секрецию инсулина из поджелудочной железы и поэтому является самой сильной АРЦ. На эквимолярной основе (такой же концентрации молекулы внутри клетки), лейцин имеет примерно такую же силу, как йохимбин, и две трети потенциала глюкозы. Лейцин является положительным аллостерическим регулятором глутаматдегидрогеназы (GDH), – фермента, который может преобразовать некоторые аминокислоты в кетоглутарат (α-кетоглутарат). Это увеличивает клеточную концентрацию АТФ (по отношению к АДФ). Увеличение уровня концентрации АТФ вызывает увеличение секреции инсулина посредством механизмов, которые не зависят от активации mTOR. Метаболит KIC может подавлять KATФ каналы и вызывать колебания кальция в панкреатических бета-клетках. Выделение кальция может также воздействовать на mTOR (стандартная цель лейцина), а активация mTOR может подавлять экспрессию α2A рецепторов. Так как α2A рецепторы подавляют секрецию инсулина при активации , а избыточная экспрессия индуцирует диабет, меньшая экспрессия этих рецепторов вызывает относительное увеличение секреции инсулина. Такой путь, вероятно, наиболее важный с практической точки зрения, так как mTOR антагонист рапамицина может отменить лейцин-индуцированную секрецию инсулина и подавить саму секрецию инсулина. Чтобы стимулировать секрецию инсулина из панкреатических бета-клеток, лейцин работает двумя путями, основным из которых является уменьшение влияния негативного регулятора (2а-рецепторов). Снижение влияния отрицательного регулятора вызывает не поддающееся лечению увеличение активности.

Лейцин в бодибилдинге

Синтез белка

Основной механизм действия лейцина – это стимуляция активности mTOR , а затем – стимуляция активности киназы p70S6 через PDK1 . Киназа p70S6 затем положительно регулирует синтез протеина. Кроме того, лейцин способен индуцировать активность эукариотического фактора инициации (eIF, в частности, eIF4E) и подавляет его ингибирующий связывающий белок (4E-BP1), который повышает трансляцию белка , что было подтверждено после перорального приема лейцина. Модуляция eIF, таким образом, усиливает синтез белка мышц, вызванный киназой p70S6. Активация mTOR – это общеизвестный анаболический путь, действие которого связанно с выполнением физических упражнений (активация с 1-2 часовой задержкой по времени), инсулином и избытком калорий. Как и другие АРЦ, но в отличие от инсулина, лейцин не стимулирует активность протеинкиназы В (Akt / РКВ), которая происходит между рецептором инсулина и mTOR, (Akt и протеинкиназа B / PKB являются взаимозаменяемыми терминами). Akt способен усиливать eIF2B, что также положительно способствует синтезу белка в мышцах, вызванному киназой p70S6 и, судя по недостаточной активации Akt с помощью лейцина, является теоретически не такой сильной, как если бы сигнализация Akt активировалась так же, как инсулин. Активация mTOR с помощью лейцина в организме человека была подтверждена после перорального приема добавок, а также активации киназы p70S6K. Исследования активации Akt не смогли выявить каких-либо изменений в функциональности человеческих мышц, и это подразумевает, что высвобождение инсулина из поджелудочной железы, вызванное лейцином (данный процесс происходит в организме человека , а активация Akt происходит с помощью инсулина), не могут быть актуальны. Лейцин способен стимулировать активность mTOR и его последующую сигнализацию синтеза белка. Хотя Akt / PKB положительно влияет на активность mTOR (поэтому, когда активирована Akt, она активизирует mTOR), лейцин может воздействовать другим путем и активизирует mTOR, не влияя на Akt. Несмотря на это, все, что активизирует mTOR, будет также влиять на киназу p70S6, а затем и на синтез белка в мышцах. Этот анаболический эффект лейцина имеет большее влияние на скелетные мышцы, чем на ткань печени ; физические упражнения (мышечные сокращения) дополняют его полезное воздействие. Согласно некоторым исследованиям, прием лейцина перед тренировкой является более эффективным, чем прием в другое время (для резкого увеличения синтеза белка). Лейцин – наиболее сильная из всех аминокислот в стимулировании синтеза мышечного белка.

Атрофия / Катаболизм

Лейцин, как известно, способствуют синтезу белка мышц при низких концентрациях в лабораторных условиях, при приеме в более высоких концентрациях лейцин может ослабить атрофию мышц, даже несмотря на остановку скорости синтеза. Этот эффект сохраняется в мышцах и был отмечен при болезнях, оказывающих негативное влияние на мышцы, таких как рак, а также сепсис, ожоги и травмы. В этих случаях преимущества приема зависят от дозы.

Гипераминоацидемия

Гипераминоацидемия – это термин, используемый для обозначения избытка (гипер) аминокислот в крови (-emia), аналогично этому, гиперлейцинемия означает избыток лейцина. Исследования показали, что у пожилых людей лейцин увеличивает синтез мышечного белка независимо от гипераминоацидемии.

Саркопения

Саркопения характеризуется снижением содержания белка и увеличением содержания жира в скелетных мышцах, которое происходит с возрастом. Одной из причин возникновения саркопении является уменьшение метаболической реакции на сохранение мышечного эффекта L-лейцина, что возникает с клеточным старением. Негативное воздействие этого эффекта можно минимизировать путем добавления L-лейцина к продуктам, содержащим белок.

Взаимодействие с питательными веществами

Карбогидрат (углевод)

Когда рецептор инсулина активирован, он может активировать mTOR косвенно через Akt. В то время как Akt положительно влияет на синтез белка, вызванный киназой S6K1 (которая активируется во время активации mTOR), добавка лейцина напрямую не влияет на активацию Akt, как это делает инсулин в лабораторных условиях. Было отмечено, что инфузия лейцина у людей существенно не влияет на активацию Akt в скелетных мышцах, т.е., секреция инсулина, индуцированная лейцином, недостаточна для стимулирования Akt. Лейцин взаимодействует с усвоенной глюкозой и снижает уровень глюкозы в крови и затем влияет на секрецию инсулина из поджелудочной железы. Интересно, что лейцин не сочетается с йохимбином в индукции секреции инсулина из-за параллельных механизмов действия. Лейцин взаимодействует с пищевыми углеводами и влияет на активность секреции инсулина из поджелудочной железы, а также взаимодействует с инсулином, что влияет на синтез мышечного белка.

Ресвератрол

Ресвератрол – фенольное вещество, которое, как известно, взаимодействует с сиртуином (главным образом с SIRT1), который идентичен лейцину. Метаболиты KIC и НМВ массой в 0,5 мМ могут индуцировать SIRT1 в 30-100% от исходного уровня, который сопоставим с активностью ресвератрола в 2-10 мкм. Это несмотря на то, что комбинация лейцина (0,5 мМ) или HMB (0,5 мкм) и ресвератрола (200 нм) способна синергически индуцировать активность SIRT1 и SIRT3 в адипоцитах (жировых клетках) и скелетных мышечных клетках . KIC - это более мощный стимулятор, чем HMB, и лучше взаимодействует с лейцином, чем с HMB (возможно, это указывает на метаболизм KIC). Когда крысам дают смесь лейцина (24 г / кг, до 200% главной диеты) или HMB (2 или 10 г / кг) с ресвератролом (12,5 или 225 мг / кг), а затем умерщвляют натощак, наблюдается уменьшение жировой массы и веса тела, также синергично. Было отмечено, что инкубация ресвератрола с лейцином или HMB фактически увеличивает активность АМФ-зависимой киназы (42-55%, соответственно) и способствует небольшому (18%) увеличению окисления жиров, несмотря на инкубацию 5 мкм глюкозы. Взаимодействие ресвератрола и лейцина (в состоянии инкубации или при приеме внутрь) посредством активации SIRT1 положительно влияет на митохондриальный биогенез.

Цитруллин

Цитруллин может восстанавливать скорость синтеза мышечного белка и мышечную функцию в процессе старения и плохого питания у крыс, что опосредуется через путь mTORC1 и разрушается ингибитором mTORC1, известным как рапамицин). Не удалось значительно изменить скорость окисления лейцина или синтеза белка организма человека с помощью добавки 0,18 г / кг цитруллина в течение недели, но в других случаях та же доза улучшает баланс азота в организме человека в сытом состоянии. Причина такого расхождения неизвестна. Существует не так уж много доказательств прямого активирующего воздействия цитруллина на mTOR, но он слабо индуцирует белки после активации mTOR (в том числе 4E-BP1) до уровня ниже лейцина. Клинически пока не доказано то, что цитруллин повышает сигнализацию mTOR, поскольку его преимущество зависит от mTOR, и в этом случае цитруллин должен быть синергичен с лейцином. Цитруллин может передавать сигналы лейцина через mTOR, что даёт основания предположить, что они синергичны. Еще не исследован эффект от применения этой смеси тяжелоатлетами, так что синергизм в настоящее время – это только неподтвержденная гипотеза.

Безопасность и токсичность

В небольшом исследовании, в котором 5 здоровых человек ступенчато принимали до 1,250 мг/кг лейцина (что в 25 раз превышает ожидаемую среднюю потребность организма в лейцине), было отмечено, что пероральный прием дозы в 500-1,250 мг вызывал увеличение в сыворотке аммиака, из-за чего верхний ограничительный порог был установлен на уровне в 500 мг / кг (для человека весом в 150 фунтов (68 кг) - 34 г) .

Пищевая добавка

Как пищевая добавка, L-лейцин имеет Е номер E641 и классифицируется как усилитель вкуса.

Доступность:

Список использованной литературы:

Nutr Metab (Lond). 2012 Aug 22;9(1):77. doi: 10.1186/1743-7075-9-77. Synergistic effects of leucine and resveratrol on insulin sensitivity and fat metabolism in adipocytes and mice. Bruckbauer A1, Zemel MB , Thorpe T, Akula MR, Stuckey AC, Osborne D, Martin EB, Kennel S, Wall JS.

Yeh YY. Ketone body synthesis from leucine by adipose tissue from different sites in the rat. Arch Biochem Biophys. (1984)

Van Koevering M, Nissen S. Oxidation of leucine and alpha-ketoisocaproate to beta-hydroxy-beta-methylbutyrate in vivo. Am J Physiol. (1992)

Dann SG, Selvaraj A, Thomas G. mTOR Complex1-S6K1 signaling: at the crossroads of obesity, diabetes and cancer. Trends Mol Med. (2007)

Nobukuni T, et al. Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci U S A. (2005)

Greiwe JS, et al. Leucine and insulin activate p70 S6 kinase through different pathways in human skeletal muscle. Am J Physiol Endocrinol Metab. (2001)

Hannan KM, Thomas G, Pearson RB. Activation of S6K1 (p70 ribosomal protein S6 kinase 1) requires an initial calcium-dependent priming event involving formation of a high-molecular-mass signalling complex. Biochem J. (2003)

Mercan F, et al. Novel role for SHP-2 in nutrient-responsive control of S6 kinase 1 signaling. Mol Cell Biol. (2013)

Fornaro M, et al. SHP-2 activates signaling of the nuclear factor of activated T cells to promote skeletal muscle growth. J Cell Biol. (2006)

Inoki K, et al. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. (2003)

Белки участвуют в строении клеток и обеспечивают нас энергией. С их помощью в наш организм поступают незаменимые аминокислоты. Для того, чтобы организм мог функционировать и развиваться, человеку нужно поступление 20 аминокислот. Давайте попробуем разобраться, в каких продуктах содержатся аминокислоты, и в каком количестве их необходимо употреблять.

Роль аминокислот для организма человека

Всего в природе существует 150 аминокислот. Для нормального функционирования организма человеку необходимо около 20 аминокислот. Незаменимые аминокислоты поступают в наш организм с пищей, которую мы употребляем. Чтобы избежать дефицита требуется знать, какие продукты содержат аминокислоты.

Незаменимые аминокислоты

  • Метионин
  • Триптофан
  • Валин
  • Треонин
  • Лейцин
  • Фенилаланин
  • Изолейцин
  • Лизин
  • Цистеин
  • Тирозин

Назначение незаменимых аминокислот

  • Метионин. Очень важная аминокислота, которая отвечает за переработку жиров в организме. Благодаря ей не происходит ожирение печени и атеросклероз. Метионин улучшает пищеварение и уменьшает мышечные боли. При поступлении аминокислоты в организм происходит защита от радиации и свободных радикалов. Метионин необходим для усвоения питательных элементов организмом и участвует в синтезе глюкозы.
  • Триптофан . Недостаток этой аминокислоты может стать причиной диабета и онкологических заболеваний. Триптофан участвует в выработке ниацина, который необходим при бессоннице, депрессии и частых стрессах. Триптофан также важен для сердца и выработки гормона роста.
  • Валин . Эта аминокислота обеспечивает восстановление поврежденных тканей и мышц. С её помощью осуществляется нормальный обмен азота. Особенно важен валин для спортсменов и после повреждения мышц. Валин также снижает уровень сахара в крови и способствует выработке гормона роста. Поддерживает уровень серотонина. При недостатке валина возникают нарушения нервной системы и координации движений.
  • Треонин . Необходим для белкового обмена, иммунной системы, роста и выработки коллагена и эластина. Участвует в выработке гормонов и оказывает непосредственное влияние на обмен веществ.
  • Лейцин. Производит защиту мышц и поставляет в наш организм энергию. С его помощью ткани восстанавливаются после серьезных нагрузок. Происходит выработка гормона роста. Помогает снизить холестерин и уровень сахара в крови. Недостаток приводит к уменьшению массы тела и нарушению работы щитовидной железы.
  • Фенилаланин. Аминокислота, которая необходима для хорошего настроения. Улучшает способности к обучению, память и обладает свойством подавлять аппетит. Аминокислота необходима для работы щитовидной железы.
  • Изолейцин. Обеспечивает организм энергией, участвует в выработке гемоглобина, а также регулирует уровень сахара в крови. Необходима для роста.
  • Лизин . Важен для костной системы и роста. Благодаря лизину усваивается кальций, что особенно важно для детей. Необходим для выработки гормонов, обмена веществ и усвоения питательных элементов.
  • Цистеин. Играет важную роль при выработке таурина, который необходим для жирового обмена веществ. Является источником глюкозы. Защищает организм от свободных радикалов и выводит токсины.
  • Тирозин. Недостаток аминокислоты приводит к слабоумию. Тирозин необходим для выработки большинства гормонов и нормальной работы щитовидной железы.

Таблица содержания аминокислот в продуктах

Журнал Chastnosti.com советует сделать свой рацион максимально разнообразным. Теперь вы знаете, в каких продуктах содержатся незаменимые аминокислоты, и сможете включать их в своё питание как можно чаще.

Содержание незаменимых аминокислот в животных и растительных продуктах питания

т Белок, % Аминокислоты (мг на 100 г продукта нетто)
Трипто-
фан
Лизин Мети- онин Валин Треонин Лейцин Изо-
лейцин
Фени-
лаланин
Гистидин
Яйцо куриное 12,7 204 903 424 772 610 1081 597 652 340
Молоко коровье 3,2 50 261 87 191 153 324 189 171 90
Мясо
говядина 1-й категории 18,6 210 1589 445 1035 803 1478 782 795 710
говядина 2-й категории 20,0 228 1672 515 1100 859 1657 862 803 718
телятина 1-й категории 19,7 245 1683 414 1156 855 1484 998 791 739
телятина 2-й категории 20,4 260 1755 453 1177 892 1566 1050 828 740
свинина мясная 14,3 191 1239 342 831 654 1074 708 580 575
кролики 21,1 327 2199 499 1064 913 1734 864 512 626
куры 1-й категории 18,2 293 1588 471 877 885 1412 653 744 486
куры 2-й категории 20,8 330 1699 574 899 951 1824 828 896 379
индейки 1-й категории 19,5 329 1636 417 930 875 1587 963 803 540
индейки 2-й категории 21,6 354 1931 518 1017 961 1819 1028 851 436
печень говяжья 17,9 238 1433 438 1247 812 1594 926 928 847
почки говяжьи 15,2 214 1154 326 857 638 1240 714 677 687
язык говяжий 16,9 176 1373 345 845 708 1215 766 696 616
Колбаса
докторская 12,8 151 945 177 672 529 913 547 508 318
сосиски молочные 11,4 203 839 111 630 357 757 313 369 302
Рыба
треска 16,0 210 1500 500 900 900 1300 1500 800 450
минтай 15,9 200 1800 600 900 900 1300 1100 700 400
морской окунь 18,2 170 1700 500 1000 900 1600 1100 700 400
карп 16,0 180 1900 500 1100 900 1800 800 800 300
судак 18,4 184 1619 534 975 791 1398 938 681 400
сельдь атлантическая 19,0 250 1800 350 1000 900 1600 900 700 500
кальмары 18,0 324 2005 521 500 648 2070 432 216 324
Творог
нежирный 18,0 180 1450 480 990 800 1850 1000 930 560
жирный 14,0 212 1008 384 838 649 1282 690 762 447
Сыр твердый 26,8 788 1747 865 1414 1067 1780 1146 1280 1508
Соя 34,9 450 2090 560 2090 1390 2670 1810 1610 620
Горох 23,0 260 1660 250 1100 930 1650 1330 1110 600
Фасоль 22,3 260 1590 280 1120 870 1740 1030 1130 630
Крупа
гречневая 12,6 180 630 260 590 500 680 520 540 300
овсяная 11,9 160 420 140 580 350 780 500 550 220
рисовая 7,0 80 260 130 420 240 620 330 350 160
полтавская 12,7 90 280 140 380 300 680 330 580 250
перловая 10,4 100 300 120 490 320 490 460 460 190
ячневая 9,3 120 320 160 450 210 510 560 490 230
пшено 12,1 180 360 270 620 440 1620 590 580 290
макаронные изделия 12,3 125 249 189 518 331 866 470 626 261
Мука пшеничная 1-го сорта 10,6 120 290 160 510 330 880 530 580 240
Мучные изделия
хлеб ржаной 5,5 67 186 62 268 175 356 207 309 103
хлеб пшеничный из муки 2-го сорта 8,4 97 229 138 384 274 538 303 391 172
батоны нарезные из муки 1-го сорта 7,4 83 165 117 330 213 553 295 395 166
булочка «Октябренок» для детского питания 11,1 126 423 318 503 394 913 494 442 237
Картофель 2,0 28 135 26 122 97 128 86 98 23
* Таблица составлена по данным кн.: Химический состав пищевых продуктов /Под ред. д-ра мед. наук М. Ф. Нестерина и д-ра техн. наук И. М. Скурихина. — М.: Пищ. пром-сть, 1979. — с. 3-147.

Белки и аминокислоты

Главной составной частью пищи являются белки . Основное назначение их - построение клеток и тканей, необходимых для роста, развития и осуществления жизненных функций организма. Белки входят в состав иммунных тел, гормонов, ферментов.

Иммунные тела (антитела) нужны организму для защиты его от различных заболеваний. Гормоны принимают участие в обмене веществ . Ферменты - биологические катализаторы, которые ускоряют в десятки и сотни тысяч раз биохимические реакции , происходящие в организме.

В желудочно-кишечном тракте белки пищи под влиянием пищеварительных соков, содержащих ферменты, постепенно расщепляются до более простых соединений - альбумоз к пептонов, а затем до аминокислот . Последние участвуют в образовании новых белков, свойственных организму человека. Пищеварительная система

В тканях одновременно с процессами образования новых белков происходит разрушение старых, которые выводятся из организма в виде конечных продуктов обмена: мочевины, аммиака, креатннина и других азотосодержащих соединений. У здоровых людей при рациональном питании количество поступающего с пищей азота (в составе белков) должно быть больше, чем количество выводимого (положительный баланс азота). Азот в организме используется для образования белка, развития и роста тканей. При отрицательном балансе азота и даже при азотистом равновесии в организме начинается распад собственных белков, что постепенно приводит к истощению. Время переваривания продуктов

Питательная ценность белков зависит от их аминокислотного состава . Из 20 аминокислот, содержащихся в пищевых белках, 8 являются незаменимыми . Это триптофан, лизин, метионин, валин, треонин, лейцин, изолейцин, фенилаланин.

Незаменимые аминокислоты участвуют в синтезе тканевых белков , оказывают влияние на прирост массы тела . Кроме того, каждая из них выполняет еще и свои специфические функции. Лизин, триптофан необходимы для роста . Лизин и гистидин связаны с функцией кроветворения , лейцин и изолейцин - щитовидной железы , фенилаланин - щитовидной железы и надпочечников . Метионин оказывает существенное влияние на обмен жиров и фосфатидов , обеспечивает антитоксичную функцию печени, играет большую роль в деятельности нервной системы.

Белки животного происхождения лучше усваиваются организмом, поскольку в них содержатся все аминокислоты, необходимые организму. Растительные белки являются менее ценными. В состав круп, хлеба, овощей и фруктов входят белки с неполным набором незаменимых аминокислот. Некоторые из них содержатся в незначительных количествах. Наибольшее количество полноценных белков в сое, горохе, фасоли, гречихе, ржи, рисе, картофеле . Биологическая ценность белка в пищевом рационе значительно увеличится, если правильно сочетать различные продукты животного и растительного происхождения. Так, богатый лизином молочный белок , дополняя аминокислотный состав муки, бедной лизином, повышает питательную ценность и усвояемость хлеба.

Изделия из муки целесообразно сочетать также с рыбой или мясом, белки которых богаты лизином и метионином . В равной мере оправдано приготовление блюд, в которых молоко сочетается с крупами. Белковая ценность яйца увеличивается при употреблении его с картофелем.

В каждом из приемов пищи должно содержаться достаточное количество незаменимых аминокислот в оптимальном их соотношении, иначе нарушается основное правило утилизации аминокислот организмом : для нормального течения процессов синтеза белка необходимо поступление незаменимых аминокислот в оптимальные сроки, а также в оптимальных концентрации и соотношении. ценными по содержанию триптофана являются такие части туши, как вырезка, тонкий и толстый края, мякоть задней ноги.молока и молочных продуктов. Наряду с молочными продуктами источниками метионина являются мясо, рыба, яйца, а из растительных продуктов - бобовые, гречневая крупа.

Из трех указанных незаменимых аминокислот труднее всего обеспечить организм метионином .

Объективным показателем оптимальной сбалансированности продукта или рациона по содержанию метионина является коэффициент отношения метионина к триптофану, принятому за 1. Чем выше коэффициент отношения метионин: триптофан в продукте, тем выгоднее включать такой продукт в рацион питания для улучшения сбалансированности его аминокислотного состава.

При синтезе белков для каждого вида тканей организма требуется строго специфичный набор аминокислот. Например, в составе тканевого белка валин, аргинин и триптофан содержатся в равных количествах (1:1:1), но если в пищевом рационе их соотношение составляет 1:1:0,5, то усвоение всех указанных аминокислот устанавливается по аминокислоте, содержащейся в минимальном количестве. Поэтому соотношение 1:1:0,5 приведет к потере белка. Некоторые неусвоенные аминокислоты при накоплении в крови в повышенных дозах могут оказать токсическое действие. Как видим, рациональный подбор белков из разных продуктов с учетом их взаимного дополнения очень важен при составлении меню.

Перестраиваясь на здоровый образ жизни, необходимо наладить поставку в организм полного набора полезных элементов. Нужно стремиться употреблять еду, наполненную естественными витаминами (при их дефиците принимать ), полезными минералами и антиоксидантами. Есть еще один блок веществ, отражающихся на состоянии здоровья и внешности. Это аминокислоты.

Они представляют собой компонент белков. Значит, их значение в человеческом организме принципиально важно. А, следовательно, всем кто следит за своим здоровьем следует изучить в каких продуктах можно найти эти жизненно необходимые элементы.

Общая характеристика: роль аминокислот в организме

Основополагающая роль аминокислот состоит в формировании организма. Особенное значение процесс роста имеет в детском возрасте. Аминокислоты в первую очередь – материал, обеспечивающий строительство белков , представляющих большую долю клетки.

Они же белки, – многосоставные органические вещества, состав которых насыщен структурными компонентами аминокислот. Это, в свою очередь, значит, что аминокислоты напрямую оказывают влияние на строение тканей и внутренних органов человека. Помимо того, они активно участвуют в работе иммунной, гормональной и иных систем жизнедеятельности.

Аминокислоты подразделяются на 2 группы: заменимые , которые организм синтезирует сам, и незаменимые , поступление коих должно быть обеспечено с пищей. При нехватке вторых, организм расходует вещества, накопленные в мышцах.

Необходимо учитывать, состав каких продуктов содержит аминокислоты, чтобы грамотно их комбинировать.

Составляя перечень продуктов, насыщенных аминокислотами, нужно помнить о градации белков на варианты растительного и животного происхождения. Вторые легче воспринимаются человеческим организмом.

Из продуктов, богатых растительным белком, самые востребованные — бобовые и злаковые. Но в поставщиках растительного белка может не быть требуемых аминокислот. При чередовании и совмещении продуктов обоих видов происхождения повышается питательная ценность протеина.

Доза аминокислот необходимая человеку

Суточная доза аминокислот , необходимая организму, — 1-2 грамма в сутки . Но есть обстоятельства, требующие значительного увеличения потребления аминокислот:

  • рост организма,
  • исключение из употребления еды животного происхождения,
  • периоды болезни и реабилитации,
  • стресс и неправильный образ существования,
  • некоторые хронические заболевания,
  • интенсивные физические и умственные нагрузки.

Нехватка аминокислот ведет к недомоганиям и болевым ощущениям в мышцах, хронической усталости, понижению качества умственной деятельности, трудностям с желудочно-кишечным трактом и иммунитетом. Явными проявлениями дефицита аминокислот являются потеря волос, сонливость и слабость, утрата аппетита. Также вероятно ухудшение кожи, задержка развития, низкая сопротивляемость инфекционным заболеваниям, ранняя седина.

Список аминокислот и продуктов которые их содержат

  1. Валин необходим для активизации умственной деятельности. Он имеется в пище как растительного (зерновые, бобовые ), так и животного происхождения (молочка и мясные продукты );
  2. Изолейцин помогает перенести тяжелые физические нагрузки. Есть в куриных яйцах, мясе птицы, печени, бобах, кешью и миндале ;
  3. Лейцин способствует регенерации кожи, мышц, костной ткани. Его организм может получить из орехов, риса (бурая разновидность), плюс рыбы или мяса ;
  4. Источники треонина молоко и яйца . Он отвечает за эффективную работу сердечно-сосудистой системы и формирование зубной эмали;
  5. Метионин оказывает влияние на деятельность почек и печени, ускоряет детоксикацию организма. Им богаты молоко, рыба, мясо ;
  6. Триптофан , отвечающий за хорошее настроение, усваивается из бананов, кунжута, фиников ;
  7. Лизин , знаменитый противовирусным действием, есть в составе молочных продуктов и злаках . Также он налаживает функциональность гормональной системы и синтез коллагена;
  8. Фенилаланин участвует в обеспечении вывода результатов метаболизма, стабилизирует работу нервной системы, улучшает память. Он находится в рыбных блюдах, курице и молочных продуктах .

Аминокислоты для красоты

Помимо перечисленных аминокислот, стоит отметить некоторые, насыщенность которыми отражается на внешности и молодости представительниц прекрасного пола. Они обеспечивают выработку эластина, подтягивающего кожу, а волосы и ногти делают прочными и здоровыми.

К ним относятся : цистеин (им богаты куриные яйца, кунжут, кукуруза, рис ) и линолевая кислота (ее ищут в маслах из зародышей пшеницы или риса, сои либо виноградных косточек ).

Свободные аминокислоты

Свободные аминокислоты присутствуют в пище в минимальной дозе. Основная доля их включена в компоненты белков, усваивающихся в ЖКТ. Каждая молекула аминокислоты, не соединенной с иными молекулами, за короткое время поступает в кровь непосредственно из кишечника, что предотвращает разрушение мышц. Поэтому такие аминокислоты невероятно востребованы в спортивном питании, несмотря на высокую стоимость . Пищеварение — долговременная и энергозатратная процедура, а для безотлагательного обеспечения тренирующегося протеином свободные аминокислоты предпочтительнее других.

Грамотно составленный рацион должен включать сбалансированный объем незаменимых аминокислот. Зная, где их искать, каждый сумеет правильно сформировать ежедневное меню.

Иногда аминокислоты принимаются в форме биологических добавок. У приверженцев активных тренировок, популярно специальное спортивное питание, имеющее в составе аминокислоты. Но это разрешено исключительно тем, кому БАДы прописал врач или опытный фитнес-тренер. Куда безопаснее получать аминокислоты с естественными продуктами.

(Visited 160 times, 1 visits today)