Кислородная катастрофа протерозоя. «Великое кислородное событие» на рубеже архея и протерозоя не было ни великим, ни событием Кислородная катастрофа в истории земли

) объединил целый ряд феноменов, связанных с рубежом архея и протерозоя, под именем «Великое кислородное событие» (Great Oxigenation Event). Имеющиеся данные позволяли представить этот рубеж таким образом: начало деятельности фотосинтетических организмов, накопление кислорода в связи с ней, и постепенное превращение планеты из восстановительной в окислительную. Последующие работы существенно скорректировали эту модель. Фотосинтетические организмы, выделяющие кислород, зародились на заре архейской жизни, но свободный кислород на рубеже архея и протерозоя появился благодаря изменениям характера земного вулканизма. 90% своей жизни планета имела практически бескислородную гидросферу и атмосферу, при этом в протерозое содержание кислорода оказывается существенно меньшим, чем предполагалось прежде, и исключительно непостоянным.

В 50-х годах XX века стали накапливаться данные о раннепротерозойском кислородном скачке (Кислородная катастрофа , или Great Oxigenation Event , «Великое кислородное событие»). Складывалось представление, что ранняя атмосфера планеты была восстановительной, а затем 2,6–2,2 млрд лет назад атмосфера и океан постепенно стали наращивать свободный кислород. Кислород образовывался как побочный продукт деятельности фотосинтетиков: для получения энергии они использовали самое легкодоступное вещество на планете - воду. Такая модель основывалась на геохимических данных. Основным из них считалось высокое содержание в архейских породах двухвалентного (недоокисленного) железа в виде пирита (FeS 2), магнетита (Fe 3 O 4), сидерита (FeCO 3). Зерна пирита при этом могли быть хорошо обкатаны, а, следовательно, они подвергались активному воздействию поверхностных вод и атмосферы. Также показательным виделось присутствие в древнейших породах графита (неокисленного углерода), лазурита (Na 2 S - неокисленная сера), а также железо-марганцевых руд. Эти последние формируются преимущественно в низкокислородных условиях, так как в неокисленном состоянии железо и марганец мигрируют вместе, а при повышенном содержании кислорода железо теряет подвижность, и их пути расходятся. В конце 60-х годов было представлено еще одно важное доказательство в пользу восстановительной атмосферы на древней Земле: осадочные уранинитовые конгломераты. Они могли накапливаться только в отсутствии кислорода, поэтому их находят только в древнейших породах. В протерозойских породах стали преобладать минералы с высокой степенью окисления элементов, железо-марганцевые руды и ураниниты исчезли. Зато появились редкие элементы, которые включаются в осадочные минералы в присутствии кислорода.

Проверка и уточнение этой гипотезы заняли следующие четыре десятка лет. Что вызвало кислородную революцию? Каковы датировки этого события? Куда девался кислород до великой кислородной революции и был ли он вообще? Почему вброс кислорода на рубеже архея и протерозоя произошел относительно быстро, а накопление кислорода шло медленно? Какова роль живых организмов в этом процессе? На все эти вопросы следовало поискать ответы. На страницах Nature Тимоти Лайонз (Timothy Lyons) с коллегами из отделения наук о Земле Калифорнийского Университета в Риверсайде суммировали то, что за это время удалось узнать. Картина, как выясняется, и сложнее, и интереснее, чем первоначальная простая модель, схематично изображенная на рис. 2.

В связи с обсуждениями этой модели прежде всего следует задать вопрос о датировках кислородного события: все же, когда это произошло? Обычно, отвечая на этот вопрос, ссылаются на данные по фракционированию серы. Из-за разной реакционной способности изотопы серы накапливаются в минералах в определенных соотношениях - в этом и суть фракционирования изотопов. По этим соотношениям судят о механизмах фракционирования: механических соответственно массе изотопов (это масс-зависимое фракционирование) или биологических (это масс-независимое фракционирование). Сигнал о смене масс-независимого фракционирования на масс-зависимое фракционирование легко читается в архейских и протерозойских породах. Считалось, что масс-независимое фракционирование обеспечивали бактерии сульфатредукторы: они предпочитали для своих нужд более легкие изотопы. Поэтому архейское время с масс-независимым сигналом считали анаэробным миром сульфатредукторов. А когда в наступившем кислородном изобилии их восстановительный мир, как предполагалось, съежился до крошечных анклавов, то и биологическое фракционирование серы в основном остановилось. И по этому сигналу датировалось наступление Великой кислородной революции. Однако удалось красиво доказать, что сдвиг от масс-независимого к масс-зависимому фракционированию изотопов серы объясняется вовсе не свержением сульфатредукторов с их господствующих позиций (об этом см. новость Древнейшие бактерии архея не были сульфатредукторами , «Элементы», 28.09.2012). Этот переход был связан с изменениями в архейской атмосфере (ее прозрачностью, плотностью, типами и объемом вулканических выбросов). Это не значит, что сульфатредукторов не было, это не значит, что не было биологического масс-независимого фракционирования серы. Это означает, что не следует связывать датировку событий фракционирования серы с кислородной революцией. Сульфатредукторы - своим чередом, а фракционирование серы - своим, и где тут помещается поступление кислорода - неизвестно. Более того, сигнал масс-независимого фракционирования может быть «размазан» во времени из-за постоянного геологического круговорота серы. Минералы, несущие тот или иной сигнал фракционирования, могли сформироваться в более древние времена, затем оказаться погребенными, затем вновь подняться к поверхности. Таким образом, древний сигнал может появиться и в более молодых образцах. Поэтому на сегодняшний день трудно, во-первых, связать сигнал о масс-независимом фракционировании с определенным временем, во-вторых, с определенным биологическим механизмом, в третьих, с кислородным событием.

Другой возможный подход к датировке кислородного события основан на поиске следов производителей кислорода - цианобактерий и других хлорофилл-содержащих организмов. Таким способом можно убить сразу двух зайцев - и оценить время наступления кислородной эры, и прикинуть, кто за этим стоит. Палеонтологи находят множество архейских ископаемых, которые интерпретируются как те или иные микроорганизмы. Но их морфология настолько проста, что трудно с уверенностью утверждать, что их метаболизм основывался на кислородном фотосинтезе.

Считалось также, что в рассуждениях об архейской жизни можно опираться на данные по биомаркерам - молекулам, специфически указывающих на тот или иной тип метаболизма и/или тип микроорганизмов. Такими, например, являются молекулы стеранов , присущих только эукариотам; для их синтеза необходим кислород. Стераны обнаружили в породах, возрастом 2,7 млрд лет. Пока ученые обсуждали, так ли уж необходим кислород для синтеза стеранов, а если необходим, то в каком количестве, оказалось, что взбудоражившие всех стераны являются позднейшим загрязнением (об этом читайте в новости Древнейшие следы эукариот и цианобактерий на Земле признаны поздним загрязнением , «Элементы», 29.10.2008). Кроме того, некоторые последние работы заставляют сомневаться в надежности данных по биомаркерам: из них многие могут оказаться позднейшим загрязнением. Но опять же, это не означает, что фотосинтетиков не было. Они были, и даже с большой вероятностью.

Чтобы подтвердить свои предположения, Лайонз с коллегами предлагает обратить внимание на график распределения органического вещества в осадочных породах архея (рис. 3).

Поразительно! Органического углерода в архее продуцировалось столько же, сколько и в населенном неогене. Теоретически продуцентами этой органики можно представить и железобактерий, окисляющих Fe 2+ до Fe 3+ , и сульфатредукторов, окисляющих сероводород, и некоторых других экзотических фото- и хемосинтетиков. Но геохимические данные не позволяют считать этих продуцентов решающей силой. Все же в первую очередь приходится обращаться к кислородному фотосинтезу, чтобы объяснить высокую продукцию органики в архее. Следовательно, фотосинтетики уже вовсю работали в архее. Это заключение в большей степени основано на логике, чем на фактических данных. Кроме того, оно, хотя и отодвигает глубоко в архей начало кислородной жизни, но не помогает датировать события кислородной революции.

Об изменениях в характере синтеза органики судили по резким скачкам на изотопной кривой δ 13 С (рис. 4). В раннем протерозое около 2,4 млрд лет назад на кривой появляется высокий положительный экскурс (то есть, происходило повышение доли захороненной биологической продукции углерода), а около 2,2–2,1 - отрицательный. Как выясняется, раннепротерозойский пик δ 13 С асинхронный, а значит, его нельзя просто истолковать как повсеместное увеличение органического производства. Скорее нужно рассматривать увеличение захороненной органики как результат дисбаланса между процессами накопления (захоронения) и разложения органики. Ясно, что если эти два процесса идут с одинаковой скоростью, то ничего не накапливается и не подвергается захоронению, а значит, и никакого сигнала мы, вероятно, не получим. Сдвиг на изотопной кривой трактуется как нарушение этого баланса в сторону накопления.

Кислород в любом случае образуется, но быстро расходуется на окисление каких-то продуктов. В архее, как указывают авторы статьи, этими продуктами были, вероятно, вулканические газы - сероводород, сернистый газ, метан и водород. Изменения в характере вулканизма уменьшили поступление этих газов, кислород в итоге стал накапливаться. Все это вместе говорит о том, что «Великое кислородное событие» следует рассматривать как результат изменений вулканических процессов и геохимических соотношений, а не сдвигов биологической активности и метаболизма.

С этих позиций удобно истолковать наступление гуронского оледенения , вероятно, первого оледенения, превратившего планету в снежный шарик. Во время изменений вулканической деятельности, во-первых, в атмосферу стало поступать меньше метана и других парниковых газов, во-вторых, метан быстро окислялся появившимся кислородом. Для тогдашней планеты с ее тусклым солнышком (светимость Солнца в архее составляла 70-80% от современного) уменьшение количества парниковых газов оказалось критично: наступила долгая стужа, планета замерзла.

Как это ни удивительно, но вслед за кислородным событием на рубеже архея и протерозоя (уже ясно, что его не следует называть великим, так как собственно события и не было) не последовало постепенного нарастания кислорода, как можно было бы ожидать при наступлении эры фотосинтетиков. Количество кислорода то снижалось, то вновь увеличивалось, планетные оледенения то наступали, то заканчивались... Так, около 2,08–2,06 млрд лет назад количество кислорода резко снизилось. Соответственно упало и количество захороненной биоорганики. Причины этих скачков пока неизвестны. Также настораживает наличие неокисленных хрома и марганца в протерозойских палеопочвах: в присутствии кислорода эти металлы должны были бы окислиться чрезвычайно быстро.

Также оказалась несостоятельной гипотеза о существовании стратифицированного океана с насыщенными кислородом поверхностными водами и насыщенными сероводородом глубокими водами (модель Черного моря). Скорее всего, напротив, сероводородные слои размещались на мелководьях (рис. 5). И это как раз было следствием активной жизни и высокой органической продукции мелководий фотической зоны . Хотя, безусловно, кислородная стратификация океана так или иначе имела место.

В результате суммирования всех этих данных и рассуждений получается, что содержание кислорода в атмосфере и океане на протяжении протерозоя было непостоянным. Оно немного повысилось по сравнению с археем, хотя оставалось сравнительно низким - ниже, чем предполагалось прежде. Стоит заметить, что никаких особых изменений в биоте с кислородными флуктуациями не связано.

Таким образом, история кислорода на планете предстает несколько иной, чем представлялось прежде (рис. 6). Кислородный фотосинтез и, соответственно, использующие его фотосинтетики существовали с самых ранних архейских времен. Свободный кислород - побочная продукция их метаболизма - мог накапливаться локально (голубые стрелки на схеме), однако масштаб раннего фотосинтеза на планете пока трудно оценить. Весь этот кислород уходил на окисление органики и других элементов, в частности, вулканических газов. Изменения в характере вулканизма на планете начались в позднем архее. Они были связаны с формированием и стабилизацией континентальных плит. В результате этих геологических процессов баланс поступления кислорода и его изъятия резко нарушился: в атмосферу стал поступать свободный кислород. Эти взаимосвязанные процессы заняли значительное время, а не случились в конце архея по мановению волшебной «фотосинтетической» палочки. В течение протерозоя уровень кислорода менялся, временами на порядок, но в среднем оставался низким. Глубокие слои океана оставались бескислородными. В конце протерозоя океан оказался насыщенным кислородом до самых глубин.

Остается загадкой второй кислородный скачок, который произошел в конце протерозоя. С ним связывается появление многоклеточной жизни. Как это ни парадоксально, при наличии большого числа отложений этого возраста и, соответственно, внушительного количества данных по этому критическому интервалу, сейчас трудно сформулировать сколько-нибудь законченную модель этого кислородного сдвига. Важно, что незадолго до него появилось очень большое количество отложений органики, обогащенной легкими изотопами, а затем последовало великое оледенение и планета превратилась в снежный шар. После оледенения захоранивалась органика с низким изотопным сигналом 13 С. Иными словами, череда глобальных событий напоминает ту, что относится к раннепротерозойской последовательности. Ясно, что и в этом случае мог нарушиться баланс между производством и стоком кислорода.

Обзор ясно показывает, что наши знания о древнейших временах нашей планеты не полны, или даже ужасающе бедны. Остается лишь надеяться на будущих исследователей, и что этот неподатливый материал все же откроет им свои тайны.

Примечания

Ссылки

  • - Nature 458, 750-753 (09.04.2009) (англ.)
  • - CNews, 03.08.2010
  • Наймарк, Елена . elementy.ru (2.03.14). .

Отрывок, характеризующий Кислородная катастрофа

Катары.
Эсклармонд тихо лежала на кровати. Её глаза были закрыты, казалось, она спала, измученная потерями... Но я чувствовала – это была всего лишь защита. Она просто хотела остаться одна со своей печалью... Её сердце бесконечно страдало. Тело отказывалось повиноваться... Всего лишь какие-то считанные мгновения назад её руки держали новорождённого сынишку... Обнимали мужа… Теперь же они ушли в неизвестность. И никто не мог с уверенностью сказать, удастся ли им уйти от ненависти «охотников», заполонивших подножье Монтсегюра. Да и всю долину, сколько охватывал глаз... Крепость была последним оплотом Катар, после неё уже ничего не оставалось. Они потерпели полное поражение... Измученные голодом и зимними холодами, они были беспомощны против каменного «дождя» катапульт, с утра до ночи сыпавшихся на Монтсегюр.

– Скажи, Север, почему Совершенные не защищались? Ведь, насколько мне известно, никто лучше них не владел «движением» (думаю, имеется в виду телекинез), «дуновением» и ещё очень многим другим. Почему они сдались?!
– На это есть свои причины, Изидора. В самые первые нападения крестоносцев Катары ещё не сдавались. Но после полного уничтожения городов Алби, Безье, Минервы и Лавура, в которых погибли тысячи мирных жителей, церковь придумала ход, который просто не мог не сработать. Перед тем, как напасть, они объявляли Совершенным, что если они сдадутся, то не будет тронут ни один человек. И, конечно же, Катары сдавались... С того дня начали полыхать по всей Окситании костры Совершенных. Людей, посвятивших всю свою жизнь Знанию, Свету и Добру, сжигали, как мусор, превращая красавицу Окситанию в выжженную кострами пустыню.
Смотри, Изидора... Смотри, если желаешь увидеть правду...
Меня объял настоящий священный ужас!.. Ибо то, что показывал мне Север, не вмещалось в рамки нормального человеческого понимания!.. Это было Пекло, если оно когда-либо по-настоящему где-то существовало...
Тысячи облачённых в сверкающие доспехи рыцарей-убийц хладнокровно вырезали мечущихся в ужасе людей – женщин, стариков, детей... Всех, кто попадал под сильные удары верных прислужников «всепрощающей» католической церкви... Молодые мужчины, пытавшиеся сопротивляться, тут же падали замертво, зарубленные длинными рыцарскими мечами. Повсюду звучали душераздирающие крики... звон мечей оглушал. Стоял удушающий запах дыма, человеческой крови и смерти. Рыцари беспощадно рубили всех: был ли то новорождённый младенец, которого, умоляя о пощаде, протягивала несчастная мать... или был немощный старик... Все они тут же нещадно зарубались насмерть... именем Христа!!! Это было святотатством. Это было настолько дико, что у меня на голове по-настоящему шевелились волосы. Я дрожала всем телом, не в состоянии принять или просто осмыслить происходящее. Очень хотелось верить, что это сон! Что такого в реальности быть не могло! Но, к сожалению, это всё же была реальность...
КАК могли они объяснить совершающееся зверство?!! КАК могла римская церковь ПРОЩАТЬ (???) совершающим такое страшное преступление?!
Ещё перед началом Альбигойского крестового похода, в 1199 году, Папа Инокентий III «милостиво» заявил: «Любой, исповедующий веру в бога, не совпадающую с церковной догмой, должен быть сожжён без малейшего на то сожаления». Крестовый поход на Катар назывался «За дело мира и веру»! (Negotium Pacis et Fidei)...
Прямо у алтаря, красивый молодой рыцарь пытался размозжить череп пожилому мужчине... Человек не умирал, его череп не поддавался. Молодой рыцарь спокойно и методично продолжал лупить, пока человек наконец-то последний раз не дёрнулся и не затих – его толстый череп, не выдержав, раскололся...
Объятая ужасом юная мать, в мольбе протянула ребёнка – через секунду, у неё в руках остались две ровные половинки...
Маленькая кудрявая девчушка, плача с перепугу, отдавала рыцарю свою куклу – самое дорогое своё сокровище... Голова куклы легко слетела, а за ней мячиком покатилась по полу и голова хозяйки...
Не выдержав более, горько рыдая, я рухнула на колени... Были ли это ЛЮДИ?! КАК можно было назвать вершившего такое зло человека?!
Я не хотела смотреть это дальше!.. У меня больше не оставалось сил... Но Север безжалостно продолжал показывать какие-то города, с полыхавшими в них церквями... Эти города были совершенно пустыми, не считая тысяч трупов, брошенных прямо на улицах, и разлившихся рек человеческой крови, утопая в которой пировали волки... Ужас и боль сковали меня, не давая хоть на минуту вдохнуть. Не позволяя шевельнуться...

Что же должны были чувствовать «люди», отдававшие подобные приказы??? Думаю, они не чувствовали ничего вообще, ибо черным-черны были их уродливые, чёрствые души.

Вдруг я увидела очень красивый замок, стены которого были местами повреждены катапультами, но в основном замок оставался целым. Весь внутренний двор был валом завален трупами людей, утопавших в лужах собственной и чужой крови. У всех было перерезано горло...

Прыгать с парашютом или по-иному радоваться жизни, возможно лишь благодаря Кислородной катастрофе. И чтобы не усыпить читателя, сразу скажу, что эта обзорная статья лишь определяет темы, за которыми охотится наука.

На сегодняшний день принято считать, что источник молекулярного кислорода в атмосфере - фотосинтезирующие организмы. Так пишет любая википедия. Зачем про это пишу я? Чтобы отрицать, что: «Никто не будет отрицать тот факт, что кислородную атмосферу Земли создали и продолжают поддерживать именно растения. Это случилось потому, что они научились создавать органические вещества из неорганических, используя при этом энергию солнечного света (как мы помним из школьного курса биологии, подобный процесс называется фотосинтез)»

Конечно, растения тоже участвуют в атмосферном балансе, но судите сами: ок 2,5 млрд лет назад, жизнь на Земле представляли прокариоты, не способные к фотосинтезу, цианобактерии робко осваивались, а кислород в атмосфере уже был. Был, иначе за счет чего тогда к концу протерозоя все двухвалентное железо окислилось, или ушло ближе к ядру? Уже тогда, в раннепротерозойской атмосфере, парциальное давление кислорода увеличивалось не только из-за планетарных, но и космических причин. Очевидно, что кислород входил в состав океана, до появления растений: «По предположению австралийских ученых, первый сухой участок земли на нашей планете возник примерно 2,5 млрд лет назад, а до этого вся планета была покрыта сравнительно равномерным слоем воды, который образовался на поверхности после того, как Земля остыла.. ученые говорят, что к таким выводам они пришли на основе глобального физического и климатического моделирования»
Жаль, что моделируя прошлое, ученые не вспомнили, что молекула воды, которой была покрыта планета, состоит из атомов водорода и кислорода. Впрочем, наука это всего лишь метафора.

Естественно, кислород входил и в состав многих минералов при формирования первого суперконтинента. 2,5 млрд. до н.э., когда Ур становится частью Кенорленда , содействуя Кислородной катастрофе.

Это дает толчок для смены Архейского эона Протерозойским. Именно тогда, появление цианобактерий на континенте и начинает способствовать концентрации кислорода в атмосфере. Ибо цианобактерии - мутанты форм космической жизни, учились оксигенному фотосинтезу, когда на планете не было растений.

Кислород. Откуда он взялся - долгоинтересная тема. Раскрыть ее в объеме статьи возможно лишь фрагментарно. В тему, напомню о другом. О том, что леса - легкие планеты, думать ошибочно и вредно. Особенно оставаясь на ночь в комнате, полной растениями, выделяющими углекислый газ.

Немного ботаники. Да, новые лесные посадки дают кислорода больше, чем расходуют. Но и они стареют. А процессы старения и гниения жрут кислород, сохраняя его нулевой баланс. Следует так же учитывать, что «лесной» кислород используется, не отходя от кассы его обитателями. Все их разнообразие, от животных до грибов и микроорганизмов, нуждается в дыхании.
Впрочем, все мы дышим только для того, чтобы получать из пищи энергию. Удивительно, что некоторые особи умудряются часть ее расходовать на мысли, в то время, как прочие тратят на неврозы.. неважно. Важно, что леса и джунгли со своим населением, эгоистично удовлетворяют лишь собственные кислородные потребности. Тем не менее, реальная оценка ситуации говорит о том, что, кислородный голод планете не грозит:
«Наземная биота компенсирует в настоящее время лишь около 13% от антропогенного потребления кислорода, связанного со сжиганием ископаемого топлива. В результате имеет место постоянное снижение запасов молекулярного атмосферного кислорода. Однако в относительном выражении это снижение крайне незначительно из-за очень больших запасов молекулярного кислорода атмосферы (1 184 000 Гт O2). Годовое антропогенное потребление кислорода составляет лишь 0.0019% от его запаса в атмосфере, а снижение запаса кислорода - лишь 0.0016%. При нынешних темпах потребления кислорода человечеству нужно более 600 лет, чтобы уменьшить содержание кислорода на 1%.
Реальный предел потенциальным возможностям человечества по использованию кислородного ресурса атмосферы определен планетарными запасами ископаемого топлива. Потенциальные запасы в кислородном эквиваленте оцениваются в 16 500 (Rogner, 1998), 17 500 (World Energy Council, 1993) и 24 320 Гт КЭ (Keeling et al., 1993). Если использовать наибольшую из цитированных оценок, легко подсчитать, что даже при полном использовании запасов ископаемого топлива из атмосферы может быть потреблено не более 2% кислорода. Добавим, что разведанные в настоящее время запасы ископаемого топлива составляют около 25% от потенциальных. Следовательно, возможности воздействия человека на содержание кислорода атмосферы оказываются невелики..»
Если кликнуть эту ссылку, загрузится полный текст доклада: http://www.sevin.ru/fundecology/authors/zamolodchikov.html

Почему сохраняется кислородный баланс, и какие еще процессы компенсируют потребление кислорода, природа не объясняет. Попробуем разобраться.
Очевидно, кислород попадает в атмосферу, не только благодаря сольволизу, электролизу и прочим известным процессам. Но благодаря и неизвестным человеку законам эволюции. Ибо природе не выгодно отказываться от земной жизни, вложив в ее эволюцию значительный объем солнечной энергии. Природа прагматична. Каждый ее импульс работает на созидание более совершенных форм жизни и уничтожение неэффективных.

Поэтому, кислород дает нам возможность не только спать, кушать и размножаться, но и эволюционировать убирая за собой мусор. Т.е. жить активной жизнью, санируя осознаваемое доступное пространство, помогая кислороду, выступающему в роли мусорщика. Ведь помимо сжигания ископаемого топлива, атмосферный кислород расходуется на окисление биомассы. И здесь нужно с благодарностью упомянуть болота. Они утилизируют биоту с минимальным потреблением кислорода.
Следовательно, заболоченные участки земли, а не леса, справедливости ради можно назвать «лёгкими планеты». Ибо дарят атмосфере половину вырабатываемого ими кислорода, используя оставшуюся для своих нужд. Еще болота дарят человеку торф, природные антисептики, выделяемые мхами, уменьшают парниковый эффект.. словом, участвуют в Киотском протоколе.

Теперь о том, что земную атмосферу обогащает кислородом некоторая сумма реакций, благодаря которой приятней дышать на берегу океана, чем в лесу.. напр, более активное электрохимическое разложение воды. Этот процесс начался в ту пору, когда растения еще не научились быть растениями.
Определенно, Мировой океан - депо молекулярного кислорода. Обмен кислородом между океаном и атмосферой зависят от погоды, тектоники, концентрации морской биоты. Влияют на кислородный обмен и суточные, и сезонные изменения температуры. Понятно, что похолодание способствует растворимости кислорода. В высоких широтах интенсивней, ибо условия более подходящие: атмосфера, давление, температура. Так, при омывании водой дна или берегов, ее ОН- анион увлекается электромагнитным полем в донную породу. Задерживаясь на грунте, электрон от него отрывается и уходит под мантию, нагревает и плавит породу. Провоцирует процессы Мохо

Представьте континенты, бесконечные побережья, приливы-отливы. Какой эл.химический потенциал!


А представьте простую волну, облизывающую камни. Каждая капля, каждая песчинка участвуют в процессе. Потому, на берегу всегда свежий морской воздух. Природа не любит выдумывать новое, пользуясь принципом фрактальности. Вот и камни на берегу округлые, имеющие большую площадь для контакта с водой. Так волне удобней отдавать электроны, каждый раз оставляя гальку с положительным зарядом.
Веками, тысячелетиями, миллионами лет непрерывно, волна за волной, формируются массированные эл.волны, уходящие в грунт. Потому и берега неровные, что тектоническая скальная порода разъедена кислородом и хлором. Потому мокрая галька и камни фонят кислородом.

В тему, следует вспомнить и о движении магнитных полюсов. Их перемещение так же влияет на состояние атмосферы. Ибо интенсивней кислород продуцируется ближе к магнитным полюсам планеты. И когда солнечный ветер играет с магнитными полюсами, то красный или зеленый цвета северного сияния - абсолютная заслуга кислорода.


(фото не мое, автора не помню)

Аляска, Гренландия, Канада, Норвегия, Нов.Зеландия, Шотландия, Россия - Кольский залив.
Фьорды, шхеры, бухты, пляжи или заливы… идеальные генераторы кислорода. С некоторым допущением, можно говорить о таких прибрежных зонах, как об альвеолах, участвующие в акте дыхания планеты. Нагреваясь и охлаждаясь, океаны дышат. Океаны, это легкие планеты. Они в большей мере, чем их обитатели, дарят Земле кислород. Кислород, расходуемый на нашу с вами эволюцию.

Таким образом, вся кислородная рокировка на планете Земля сбалансирована мощными механизмами. Один из которых - электрохимический. Так, что со времен Кислородной катастрофы, кислородный голод планете не грозит. Этот баланс, невзирая на ошибки человечества, сохраняется благодаря энергии звезды по имени Солнце.
А оно пока не собирается гаснуть. У Солнца иные цели.

С появлением кислорода начал формироваться озоновый экран нашей планеты, что привело к отсечению УФ-лучей от солнечного спектра. В этих условиях, естественно, отбор пошел по пути все большего использования длинноволновой радиации в процессах углеродного метаболизма.

Переходными между аэробами и анаэробами являются хемоавтотрофы и фоторедукторы, особенности которых достаточно хорошо изучены (Э. Брода, 1978; М. В. Гусев, Г. Б. Гохлернер, 1981). Анаэробные фототрофы с сульфатным типом дыхания появились на 1 млрд. лет раньше аэробов. Аэробные механизмы возникают в виде дополнения к процессам брожения для увеличения выхода АТФ (аэробное окисление у молочнокислых бактерий) или нитратного дыхания, где нитраты (NO 3 —) служили акцепторами водорода (Э. Брода, 1978). В отличие от анаэробных механизмов окислительные надстройки по существу не являются универсальными, у различных групп современных организмов они значительно различаются между собой. Так, в частности, у прокариот окислительное генерирование энергии идет на наружной клеточной мембране и в ее впячиваниях, а у эукариот - на внутренней мембране митохондрий (Т. В. Чиркова, 1988).

Разница между аэробным и анаэробным дыханием состоит главным образом в акцепторах и продукции АТФ. Одной из важных надстроек при возникновении аэробногр дыхания является цикл Кребса (ЦТК), протекающий в митохондриях. Возникновение его связывают с циклом Арнона, характерным для зеленых серобактерий. Некоторые реакции ЦТК функционируют уже у клостридий и метанобразующих бактерий (при синтезе глутамата из α-кетоглутаровой кислоты). Существует мнение о начальном самостоятельном возникновении ди- и трикарбоновой части ЦТК, так как среди цианей и зеленых бактерий встречаются формы, у которых эти звенья еще не соединены, на уровне α-кетоглутаровой кислоты.

Электрон-транспортная дыхательная цепь, где происходит окисление НАД ∙ Н в аэробных условиях, складывается в результате «инверсии» фотосинтетической ЭТЦ (Г. Б. Гохлернер, 1977). Электрон в ЭТЦ дыхания передается постепенно переносчиками на акцепторы, причем от имеющих низкий окислительный потенциал к акцепторам с все большим окислительным потенциалом и, наконец, к кислороду. На один атом кислорода при окислительном фосфорилировании синтезируется три молекулы АТФ.

В связи с этим появление кислорода в атмосфере благодаря деятельности фототрофов, несомненно, должно было привести к изменению прежде всего донорно-акцепторных отношений в живой природе. Возникла задача «отработки» системы акцептирования агрессивного химического агента - кислорода. Первыми испытанию на надежность подвергались сами организмы, выделяющие кислород; их внутриклеточные компартменты и такие высокочувствительные к O 2 ключевые ферменты, как нитрогеназа, гидрогеназа и РБФК. Ввиду выделения такими организмами кислорода и накопления его внутри себя они в конце концов должны были вымереть из-за прекращения, размножения и угнетения общего метаболизма.

Вероятность указанного процесса возрастала и по другой причине, в частности из-за возможности перевода хлорофилла a в сингелетное состояние, что грозило фотоокислительному повреждению его молекулы. Поэтому необходимы были системы внутриклеточной инактивации O 2 . Наиболее простой выход таился в рамках исходной клетки. Именно тогда могли проявиться присущие молекуле каротиноидов защитные свойства, благодаря их способности вступать во взаимодействие с триплетным состоянием хлорофилла и самим O 2 следующим образом:

Каротиноиды + O 2 → каротиноиды (триплетное состояние) + O 2 → (основное состояние) → каротиноиды (триплетное состояние) → каротиноиды (основное состояние) + теплота.

Со способностью к подобным превращениям каротиноидов, в том числе и у существ, не выделяющих кислород, отчасти связано широкое распространение их в живой природе. Это обстоятельство делало возможным обитание таких анаэробных существ в соседстве с кислородовыделяющими формами.

Каротиноиды выполняли функцию фотопротекторов, защищая клетки и ткани от вредного действия видимой радиации и O 2 . Они служили в качестве светособирающих пигментов в восстановленной атмосфере в раннем периоде Земли. По мере насыщения атмосферы O 2 эта функция каротиноидов постепенно утрачивалась, а фотопротекторная функция усиливалась (R. Maroti et al., 1984). В этом случае они играют роль «энергетического клапана» при изменении интенсивности света.

В то же время, как подчеркивает Р. Клейтон (1984), первичное устранение токсичности O 2 могло быть достигнуто его использованием для окисления Fe 2+ , находящегося в большом количестве в водах и, следовательно, внутри самой клетки. При исчерпании возможностей каротиноидов и запасов Fe 2+ (что наблюдалось по мере усиления фотосинтеза самой клетки) O 2 начал выходить из клетки и поступать в окружающую среду примерно около 2 млрд. лет назад. При этом возросла опасность для окружающей жизни. Кислород мог выйти в атмосферу из клетки и после гибели его продуцента. Значимость такого выхода нельзя отрицать даже если при этом освобождалось 10 -6 мг O 2 . Агрессивность O 2 могла быть значительной в случае отмирания миллиардов существ, выделяющих кислород.

По указанным и другим причинам O 2 становился все более губительным для окружающих существ, не выделяющих его. Опасность первичного O 2 была связана с возможностью при его участии образования супероксидных радикалов O 2 — , гидроксидного радикала ОН, пероксида водорода H 2 O 2 , озона O 3 , сингелетно-возбужденного O 2 — и атомарного O состояний кислорода. В связи с этим защита живых организмов могла быть обеспечена путем или «укрытия» их в нишах, где нет O 2 , или выработки приспособлений для метаболической утилизации O 2 . Так, по имеющимся Данным, уже при содержании в атмосфере 0,2% O 2 (что соответствует 0,01% от современного уровня его содержания) возникла необходимость переключения процессов брожения на аэробное дыхание.

Первичная толерантность к O 2 , как отмечено выше, была основана на использовании пассивных средств, защиты, т. е. возможностей самой среды (внутренней ивнешней). С накоплением O 2 в среде часть его под действием УФ-лучей стала превращаться в O 3 . Так стад формироваться озоновый экран планеты. На значение озонового экрана в развитии жизни обращал внимание Л. С. Берг (1944), внося коррективы в гипотезу А. И. Опарина. В частности, Л. С. Берг писал, что до появления фотосинтезирующих растений, когда в стратосфере не было озонового экрана, жизнь могла возникнуть и тем более сохраниться только в местах, защищенных от губительного действия космических лучей. В качестве таких мест автор считал скопление воды на поверхности суши под обломками минеральных пород коры выветривания. Точно так же Н. Г. Холодный считал мелкие континентальные водоемы колыбелью земной жизни. По мнению Л. Г. Стеббинса (1982), первые фотосинтезирующие бактерии появляются в руслах рек или пресных мелководий. По общему признанию, озоновый экран стал играть эффективную роль в защите многих Организмов от губительных компонентов солнечного света. Возможно, именно это обстоятельство «вывело» жизнь из морской глубины на свет, т. е. на хорошо освещенную поверхность воды. Такой подъем был осуществлен и бесцветными формами жизни, что в итоге способствовало соприкосновению разнообразных существ с O 2 . И тем самым повышался успех отбора среди них достижением коренного решения проблемы защиты организмов от O 2 , метаболизацией его в энергетических целях для синтеза АТФ.

Поиск, судя по ныне живущим прокариотам, шел в разных направлениях, в частности имел место отбор организмов по способности синтеза специальных ферментов (супероксиддисмутаза, каталаза, пероксидаза) и клеточных метаболитов (каротиноидов), формирования сообществ (из разных по устойчивости к O 2 организмов) и структур (митохондрий и хлоропластов), а также по использованию O 2 при азотфиксации, люминесценции и т. п. По этой причине у многих современных анаэробных прокариот найден тот или иной путь защиты от O 2 , позволяющий им жить в аэробной среде. Сказанное можно демонстрировать и наблюдениями о поглощении O 2 некоторой частью современных анаэробных прокариот при столкновении с ним (М. В. Гусев, Л. А. Минеева, 198S).

Использование O 2 прокариотами в последующем пошло по пути ферментативного и неферментативного (прямое внедрение в молекулу) взаимодействия. Аэротолерантность первично возникает у форм с субстратным фосфорилированием. Так, молочнокислые бактерии способны, не используя O 2 в, метаболизме, восстановить его до H 2 O 2 благодаря наличию флавиновых ферментов. У них пероксид накапливается в клетке из-за отсутствия каталазы. У анаэробных пропионовокислых бактерий аэротолерантность обеспечивается наличием супероксидцисмутазы, каталазы и пероксидазы для обезвреживания супероксидного аниона и H 2 O 2 . Эволюция у пропионовых бактерий пошла еще дальше по пути приспособления к аэробным условиям, у них обнаружены цитохромы, реакции ПФП и ЦТК. В связи с этим у пропионовых бактерий расширяются возможности использования разных сред и пути вовлечения CO 2 в метаболизм. С формированием ПФП становится Возможной полная деградация углеводов и начинается эра переноса отщепленного при этом водорода на кислород.

Эволюция по пути метаболического использования O 2 привела в вовлечению его в реакции как акцептора электронов и источника энергии для клетки. В этом как раз большую роль призваны были сыграть складывающиеся ферментативный комплекс (для запасания АТФ) и ЭТЦ, участвующая в переносе протонов через мембрану и электронов на O 2 . Согласно представлениям П. Митчела, указанные два процесса могли сложиться неодновременно, причем у разных существ. Поэтому возникает проблема их объединения в одном существе для эффективного метаболического использования O 2 , что могло быть достигнуто или симбиозом разных существ, или мутационным преобразованием других звеньев метаболизма (ЭТЦ фотосинтеза в дыхательную цепь). Мы не знаем, как обстояло здесь дело, хотя многие полагают наиболее вероятным второй путь.

Как бы то ни было, возникает способность полного отщепления Н 2 от субстрата, переноса его на O 2 и преобразования энергий такого переноса в химическую энергию АТФ. Это стало возможным после возникновения ЦТК в результате «надстройки» некоторых реакций на анаэробные энергетические механизмы клетки. Неполный, или «разорванный» ЦТК обнаружен у ряда анаэробных фототрофных бактерий, цианей и др. О роли и степени выраженности ЦТК у разных прокариот достаточно сказано (М. В. Гусев, Л. А Минеева, 1985). Для нас же важно, что указанный цикл стал функционировать первоначально наиболее полно у фототрофов - цианей и многих пурпурных бактерий. Именно выделение O 2 последними «вдохнуло» жизнь в «выжидающие» реакции ЦТК, т. е. подключило последние к системе энергодобычи. Это произошло на критических этапах эволюции жизни на Земле, когда к системе энергообеспечения стали предъявляться повышенные требования: выжить или вымереть существам.

Стабилизация ЦТК в ходе эволюции связана с возможностью получения наибольшего количества АТФ и обеспечения значительной эффективности процесса из-за присоединения промежуточного метаболита к другой молекуле с низкой молекулярной массой (Н. A Krebs, 1981).

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

ГОСУДАРСТВЕННОЕ ВЫСШЕЕ УЧЕБНОЕ ЗАВЕДЕНИЕ

ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Факультет экологии и химической технологии

Кафедра химической технологии топлива

по дисциплине

«Основы технического творчества»

на тему: «Этика в техническом творчестве»

Выполнил:

студент группы ТХВ-13 Островский С. В.

Проверил:

Кипря А.В

Донецк 2015 г.

а) Примеры Супервулканов 8

b) Последствия Супервулканов 9

Список использованных источников 19

Введение

В общественном сознании прочно укоренилось представление об экологии как о степени загрязнения окружающей среды. На самом деле это не так. Экология - это наука и она, как и все остальные науки, не может быть плохой или хорошей. Но сплошь и рядом слышится: "здесь плохая экология" или "там экология нарушена". Экология же, как наука изучает взаимоотношения в живой природе, и вот как раз они-то и нарушаются человеком все чаще и чаще. Это и исчезновение видов, каждый из которых выполнял в природе определенную роль, это и изменения численности других видов вследствие охоты, загрязнений, уничтожений мест обитания и т.д.

Когда в 1960-е гг. человечество начало осознавать серьёзность встающих перед ним экологических проблем, возник вопрос: сколько времени у нас осталось? Сколько лет пройдёт, прежде чем мы столкнёмся с трагическими последствиями нашего пренебрежительного отношения к окружающей среде? Ответом было: 30-35 лет. Сейчас, когда мы приближаемся к концу назначенного тридцатилетнего срока, этот прогноз навязчиво преследует человечество. Прогноз был недалёк от истины, так как налицо потепление климата, дыры в защитном озоновом слое над полюсами, повсеместное присутствие токсичных химических веществ, загрязнение пищевых продуктов остатками пестицидов и вымиранием огромного числа видов по мере отступления лесов перед растущим народонаселением планеты.

Всё это весьма печально. Отрадно же то, что перечисленные проблемы изучены и уже разработаны (по крайней мере теоретически или на уровне опытных установок) технологии, позволяющие их разрешить, а значит, обеспечить устойчивое развитие общества.

  1. Природные катастрофы

1.1. Кислородная катастрофа

Кислородная катастрофа (кислородная революция) - глобальное изменение состава атмосферы Земли, произошедшее в самом начале протерозоя, около 2,4 млрд лет назад. Результатом Кислородной катастрофы стало появление в составе атмосферы свободного кислорода и изменение общего характера атмосферы с восстановительного на окислительный. Предположение о кислородной катастрофе было сделано на основе изучения резкого изменения характера осадконакопления.

Оказалось, что на протяжении загадочного периода «молчащей эволюции» содержание кислорода в атмосфере было на самом деле весьма невелико – всего 0,1% от нынешней его концентрации. То есть уровень кислорода сильно просел почти сразу же после первого резкого его повышения, случившегося 2,3 млрд лет назад. И следующий значительный скачок кислорода случился уже как раз 800 млн лет назад. То есть у жизни на Земле были все причины оставаться в относительной спячке.

Конечно, это исследование только констатирует факт того, что уровень кислорода упал после первого скачка вверх. Почему именно он упал, куда делся кислород из атмосферы на целый миллиард лет, мы пока можем только гадать. С другой стороны, нужно помнить, что даже после второго кислородного скачка эволюционный двигатель не сразу заработал в полную силу, и потребовалось ещё 260 млн лет, чтобы произошёл кембрийский взрыв, когда за короткое время образовалось огромное множество новых форм жизни. Возможно, в период перед кембрийским взрывом как раз и происходили окончательные молекулярно-генетические изменения, позволяющие организмам использовать все преимущества кислородной атмосферы. Наука и жизнь, Кислородная катастрофа случилась на Земле не сразу.