Мышиный тест-драйв. Точное измерение длины по импульсному выходу. Часто области применений перекрываются

Компьютерная мышь – удобный и самый распространённый манипулятор. Она значительно упрощает работу с электронными документами и мультимедиа, а некоторые игры предназначены исключительно для управления мышью. Стеллажи компьютерных магазинов заполнены сотнями их модификаций, отличающихся размером, количеством кнопок и ценой. Но главное отличие скрывается под корпусом. Это тип источника излучения, который может быть представлен светодиодом или лазером. Что же лучше: оптическая светодиодная или лазерная мышь? Полный ответ на этот вопрос даст их подробное сравнение.

Устройство, принцип работы и основные отличия

Несколько последних лет на рынке главенствует второе поколение оптических мышек, которые так называют из-за встроенных линз. Их конструктивная особенность состоит в наличии высокочувствительного датчика – камеры, которая непрерывно сканирует поверхность и передаёт результат на процессор. Частота снимков – несколько тысяч раз в секунду с разрешением до 40х40 пикселей.
Принцип действия оптической светодиодной мыши основан на излучении светодиодом широкого луча, который фокусируется первой линзой и образует яркое пятно в области захвата камеры, что позволяет фиксировать малейшие изменения на сканируемой поверхности. Полученная информация через вторую линзу поступает сенсор, а затем обрабатывается процессором.

В оптической лазерной мышке излучающим элементом служит лазерный полупроводниковый диод, чаще всего работающий в инфракрасном (ИК) спектре. В процессе работы тончайший луч проходит через первую линзу, достигает рабочей поверхности и отражается от неё. Для увеличения точности он фокусируется второй линзой и затем попадает в сенсор. Полученные снимки сравниваются, и по этим результатам делается вывод о перемещении курсора. В ходе совершенствования конструкции появились модели, у которых в одном корпусе размещен сенсор, процессор и лазерный диод.

Разрешающая способность

Этот параметр имеет принципиальное значение при выборе игровых мышек. Измеряют разрешающую способность в dpi (dots per inch) или cpi (counts per inch). Обе единицы измерения актуальны, но cpi более точно характеризует работу оптического манипулятора и показывает количество считываний на дюйм.

Чем выше dpi/ cpi, тем точнее курсор передвигается по экрану.

Вот простой пример. Разрешающая способность экрана по горизонтали 1600 dpi, а у мыши – 400 dpi. Это означает, что, передвигая манипулятор по столу на одну условную единицу, курсор сместится на экране на расстояние в 4 раза больше. С такой дискретностью трудно попадать курсором на мелкие значки программ, а об играх, где важна скорость и точность курсора мыши, можно забыть.

Для большинства оптических светодиодных мышек, рассчитанных на рядового пользователя, приемлемым считается показатель 800–1200 cpi. Этого вполне хватает для комфортной работы с офисными программами на мониторах с диагональю до 27 дюймов.

Разрешающая способность лазерных мышек имеет более широкий диапазон значений и может варьироваться от 1000 до 12000 cpi. Во многих моделях доступно несколько фиксированных значений cpi. За счет наличия собственной внутренней памяти и дополнительных кнопок, пользователь может в любой момент выбрать подходящее разрешение.

Скорость и ускорение

Большая часть оптических светодиодных мышек относится к бюджетному классу и в их характеристиках отсутствуют данные о скорости перемещения корпуса манипулятора.

У их лазерных коллег скорость передвижения и показатель ускорения – параметры, от которых зависит точность попадания курсора в заданную точку экрана как при плавном, так и при резком движении руки. Достаточно высокой считается скорость 150 дюймов в секунду с ускорением 30g, обеспечивая при этом точность в 8000 cpi. Чтобы обеспечить столь высокие показатели, возможности процессора должны быть соизмеримы с возможностями сенсора.

Энергопотребление

В проводных моделях этим показателем можно пренебречь, т. к. системный блок потребляет в 50-200 раз больше. А вот стабильная работа беспроводного девайса полностью зависит от батареек (аккумулятора), следовательно, на счету каждый милливатт потреблённой энергии.

Для светодиодной мышки нормой считается ток потребления около 100 мА с питанием 5В от USB, что составляет 0,5 Вт.

Энергопотребление мышки с лазерным диодом на порядок меньше. Такой беспроводной манипулятор, без подзарядки аккумулятора, способен прослужить в 10 раз дольше своего светодиодного аналога.

Возможности

В корпусе стандартной оптической мышки с красным светодиодом размещены три кнопки и колесо прокрутки. Этого достаточно для работы с программным обеспечением и интернетом. Есть модели с дополнительными кнопками, которым присваивают часто используемые функции при помощи макросов.

В описании мышки лазерного типа можно увидеть целый ряд характеристик, свидетельствующих о его возможностях. Большая часть из них влияет на точность и скорость перемещения курсора, что непременно важно при работе с графическими редакторами и в современных сетевых играх.

Требования к рабочей поверхности

Оптические светодиодные мышки традиционной конструкции, хотя и уступают новым разработкам, работают надёжно с большинством типов поверхностей и отличаются повышенной универсальностью. Для их стабильной работы с отсутствием рывков необходима ровная поверхность, которая может быть изготовлена из различных материалов. Исключение составляет лакированное дерево, стекло и зеркало. Прекрасная функциональная способность отмечена на многих видах тканей, в том числе с выраженной текстурой. Ещё одно достоинство мышек со светодиодом состоит в том, что они не критичны к величине рабочего зазора между корпусом и поверхностью. Поэтому они вполне приемлемы (но не идеальны) для управления компьютером с дивана или кровати.

Лазерный сенсор, несмотря на более точное позиционирование, весьма капризен в контакте с некоторыми материалами. Девайсам бюджетного класса противопоказаны глянцевые, полированные и покрытые лаком поверхности, а также любые неровности, которые увеличивают зазор и, тем самым, изменяют фокусное расстояние отраженного луча. Идеальным вариантом для геймеров будет плоскость с четкой структурой (рисунком) или коврик.

В ходе совершенствования лазерных манипуляторов набирает обороты технология G-laser, разработчики которой заявляют об отличной работе устройств на всех видах поверхностей, включая стекло и гладкий пластик. Однако критичность к зазору вынуждает их применять только на ровной плоскости.

Стоимость

Утверждение: «Светодиодные мышки дешевле лазерных» не совсем корректно. Фирменные LED модели с оригинальным дизайном и дополнительными функциями могут по цене превосходить простые аналоги на лазерном диоде. Но если сравнивать продукты одного изготовителя, то разница между моделями с разным принципом действия ощутима.

Выбирая оптическую беспроводную мышку, лучше отдать предпочтение более дорогому изделию лазерного типа, чтобы впоследствии намного реже менять батарейки. Недорогие проводные мыши на светодиоде отлично подойдут для домашнего ПК.

Одним из пунктов выбора лазерной мышки должно стать её тестирование непосредственно в магазине на разных поверхностях.

Кроме технических показателей, немаловажным свойством каждой мышки является эргономичность. Привлекательный внешний вид и удобное расположение в руке являются обязательным условием выбора. В противном случае пользователь будет получать порцию нервного раздражения при каждом несоответствии движений руки с перемещением курсора на мониторе.

Читайте так же

Компьютерная мышь - пожалуй, самый массовый и распространенный компьютерный девайс. Со времени ее изобретения в 1963 году, конструкция манипуятора претерпела основательные технологические изменения. Уже забыты мыши с прямым приводом из двух перпендикулярных металлических колес. Ныне актуальны оптические и лазерные устройства. Какая компьютерная мышь лучше — лазерная или оптическая? Попробуем разобраться в различиях этих двух типов мышек.

Конструкция

Современный манипулятор-мышь имеет встроенную видеокамеру, которая с невероятной скоростью (более тысячи раз в секунду) делает снимки поверхности и передает информацию на свой процессор, который, сравнивая снимки, определяет координаты и величину смещения манипулятора. Чтобы снимки были качественнее, поверхность следует подсветить. Для этой цели используются разные технологии:

Оптическая мышь

В ней задействован светодиод, работа которого позволяет сенсору лучше принимать, а процессору быстрее считывать информацию и, соответственно, определять позицию девайса.

Лазерная мышь

Для контрастной подсветки поверхности применяется не светодиод, а полупроводниковый лазер, сенсор же настроен на улавливание соответствующей длины волны этого свечения.


Фото: compress.ru

Разрешающая способность

Аббревиатура dpi, которую мы часто видим на ценниках в магазинах, где продаются мыши, означает количество точек на дюйм, т.е. разрешающую способность. Чем она выше,тем лучше чувствительность девайса. Для обычной работы на компьютере вполне достаточно 800 dpi — подойдет и оптическая мышь, а вот для любителей виртуальных игр и профессиональных художников-дизайнеров необходимо большее разрешение манипулятора — поэтому им лучше купить лазерную компьютерную мышь.

Оптическая мышь

У большинства из них этот показатель составляет 800 dpi, максимальный же - 1200 dpi.

Лазерная мышь

У них разрешение в среднем 2000 dpi, максимальное же превышает 4000 dpi, а не так давно на рынке появились лазерные мышки с разрешающей способностью 5700 dpi, позволяющие к тому же управлять значением этого показателя для экономии энергии.

Цена

Оптическая мышь

Более дешевая - стоимость от 200 рублей.

Лазерная мышь

Достаточно дорогая: от 600 до 5000 рублей и больше (топовые игровые модели)

Скорость и точность

Полупроводниковый лазер, излучающий невидимый глазу свет в инфракрасном диапазоне, является более точным, считывание информации происходит качественнее, а значит и позиционирование мышки точнее. Улучшаются такие критерии, как скорость и точность. Особенно это актуально для геймеров, а также для графических дизайнеров — им лучше выбирать лазерную мышь.


Фото: www.modlabs.net

Потребление энергии

Лазерная мышь, по сравнению с оптической светодиодной, потребляет намного меньше энергии. В особенности это важно при использовании беспроводной мыши, где вопрос экономии энергии аккумуляторов или батареек является насущным. Для манипуляторов в проводном исполнении данный фактор несущественен.

Рабочая поверхность

Даже самому простому представителю класса светодиодных мышек не требуется коврик, поскольку он работает практически на всех поверхностях. Исключение составляют прозрачные стеклянные, глянцевые и зеркальные. Здесь светодиодная мышь будет действовать с такими сбоями, которые просто заставят вас постелить под нее коврик. А вот лазерной подсветке практически безразличен материал плоскости передвижения мышки, такие девайсы легко справляются с любыми поверхностями, включая и зеркальные. Но, присутствует один нюанс. Для лазерной мышки очень критичен плотный контакт с рабочей плоскостью отражения. Появление зазора даже в 1 мм существенно усложняет работу такого устройства, а светодиодная может работать даже на коленке.


Фото: www.engineersgarage.com

Подсветка

Еще один недостаток светодиодной мыши, который отмечается многими пользователями - это свечение (чаще красного, реже - синего или зеленого цвета) даже при выключенном компьютере, что не всегда удобно и приятно глазу - например, ночью, когда вы пытаетесь уснуть, а с компьютерного стола светит довольно яркий луч. В лазерных же никакого свечения нет, поскольку, как указывалось выше, он излучает невидимый нашему глазу инфракрасный свет.


Фото: topcomputer.ru

Такие характеристики манипулятора-мыши, как эргономика, красота, цвет, материал изготовления, тактильные ощущения, количество дополнительных кнопок являются сугубо личными и зависят от человеческих предпочтений.

Подведение итогов: преимущества и недостатки

Оптическая светодиодная мышь

Преимущества:

  • низкая цена;
  • зазор между мышью и рабочей поверхностью некритичен.

Недостатки:

  • не работает на зеркальных, стеклянных и глянцевых поверхностях;
  • невысокая точность и скорость курсора;
  • невысокая чувствительность;
  • отвлекающая подсветка;
  • высокое потребление энергии в беспроводном исполнении.

Оптическая лазерная мышь

Преимущества:

  • работа на любых рабочих поверхностях;
  • высокая точность и скорость курсора;
  • высокая чувствительность и возможность управления разрешающей способностью;
  • отсутствие видимого свечения;
  • низкое потребление энергии в беспроводном исполнении;
  • возможность использования множества дополнительных функциональных кнопок.

Недостатки:

  • высокая цена;
  • критичность к зазору между мышью и рабочей поверхностью.

Какую мышь лучше купить — лазерную или оптическую?

Если исходить исключительно из технических характеристик, то лазерные мыши лучше оптических светодиодных девайсов практически по всем показателям. Но означает ли это, что надо непременно избавиться от оптической мышки? Ведь до сих пор она великолепно справлялась со своими задачами.

Выбор всегда остается за вами. За лазерную мышь придется выложить достаточно большую сумму. Хорошо, если вы геймер или дизайнер - тогда вложения быстро окупятся (либо в материальном, либо в моральном плане). Если же вы обычный пользователь офисных программ и Интернета, то какого-то качественного скачка в уровне точности отклика манипулятора вы, скорее всего, даже не заметите. Другое дело, если требуется беспроводная мышь — тогда лучше купить лазерную мышь вместо оптической. Приобретя лазерную, вы здорово сэкономите на батарейках - заряд она держит в несколько раз дольше, чем оптическая.

Лазерный сенсор используется для контролирования какого-либо области пространства. Он точно реагирует на пересечение лазерного луча и объекта, подсчитывает количество таких пересечений.

Лазерный сенсор можно сделать из микрокалькулятора посредством добавления радиоэлемента без печатной платы, при незначительных затратах средств и свободного времени.

Функциональность и характеристики лазерного сенсора движения.

Конструкция сенсора включает в себя три основных модуля: микрокалькулятора, лазерной указки и фотоприемника. Калькулятор устанавливается в режим подсчета, а работа датчика осуществляется совместно с лазерной указкой. Каждое прерывание луча лазера изменяет показание калькулятора на единицу. Дистанция гарантированного срабатывания сенсора составляет от 10 до 100 м.

Мигающий светодиод используется в качестве фотодетектора. Такое решение объясняется принципом работы фотодиода, помимо этого, подключение иного радиокомпонента может заблокировать клавиатуру калькулятора и работоспособность всего устройства.

Конструкцией сенсора предусмотрено питание каждого элемента от собственного источника, что позволяет относить модули на любые доступные расстояния.

Компоненты конструкции сенсора

Конструкция сенсора состоит из следующих компонентов:

  1. Светодиод, мигающий, красного цвета свечения в 3 мм корпусе;
  2. Канцелярская скрепка;
  3. Изолирующие трубки;
  4. Прямоугольная резиновая стерка;
  5. Двойной провод;
  6. Трубка черного цвета;
  7. Калькулятор Citizen;
  8. Подставка для лазерной указки;
  9. Выключатель в форме кольца;
  10. Лазерная указка.
Принцип работы.

Принцип работы сенсора основан на преобразовании излучения лазера в импульс тока в светодиоде, с последующей передачей его на клавиши калькулятора.

В корпус мигающего светодиода установлена микросхема с ключом управления. При подключении к клавише калькулятора питание через подсоединенные провода поступает на микросхему. Ток и потенциал слишком малы, и потому светодиод неактивен, таким образом, размыкание и замыкание ключа не происходит.

При попадании луча лазера на кристалл светодиода на его поверхности образуется электроток, поступающий к микросхеме, расположенной на подложке кристалла. Вырабатывается импульс тока, замыкается ключ и при снижении напряжения в цепи происходит имитация нажатия кнопки, которое регистрирует калькулятор.


Материалы и детали.

Для монтажа лазерного сенсора не требуется изготовление печатной платы. Перечень радиокомпонентов приведен в таблице. На фото указаны элементы, использующиеся при сборке сенсора.

Инструкция по сборке.

Сначала следует подготовить калькулятор, сняв заднюю крышку. Далее необходимо определить контакты, соответствующие кнопке “равно” со стороны токоведущих дорожек. Отыскать требующиеся контакты будет проще при сопоставлении кнопки «равно» с размещенными контактами. Для полной уверенности можно проверить эти контакты посредством тестера, поставленным в режим измерения сопротивления при замыкании.

В задней крышке высверливаются два отверстия диаметром 2-3 мм.

Светодиод сможет работать в качестве фотоэлемента только при правильном его подключении, поэтому крайне важно соблюдать полярность.

Для обеспечения точности попадания луча лазера в светодиод, его необходимо закрепить неподвижно.

Для этого предназначена специальная опора, не позволяющая светодиоду болтаться и облегчающая его монтаж в любой позиции. Для изготовления поры потребуется стерка и скрепка.

По центру стерки проделываются два сквозных отверстия на расстоянии друг от друга в 6 мм. Скрепку нужно распрямить и придать ей П-образную форму.

В стерке проделывается небольшая канавка от левого отверстия в сторону левого края. Аналогичным образом проделывается канавка и от правого отверстия.

П-образная скоба продевается в отверстия и опускается до самой поверхности стерки.

На светодиод нужно надеть черную трубку с целью исключения влияния сторонних боковых излучений, к примеру, солнца, осветительных ламп.

Таким образом, модуль приема готов.

Переходим к сборке передающего модуля лазерного сенсора. Для этого подготавливаем обыкновенную лазерную указку, продающуюся в любом газетном киоске.

Лазерная указка закреплена на опоре, а ее включение/выключение осуществляется посредством кольцевого выключателя.

Сначала делаем выключатель. Для его изготовления потребуется тонкий картон, из которого вырезается прямоугольник. Этим прямоугольником оборачивается корпус указки и изолируется изолентой. Кольцо должно иметь возможность беспрепятственно перемещаться по корпусу указки.

Для выключения указки нужно переместить кольцо в другую сторону.

Затем необходимо раскрутить заднюю крышку лазерной указки в районе отсека для размещения батарейки и колпачок, находящийся в передней ее части. Указку размещаем в отверстии опоры и закручиваем обе крышки. После того, как будут закручены обе крышки, указка надежно зафиксируется в опоре.

Управление и настройка

Калькулятор необходимо расположить таким образом, чтобы цифры, отображаемые на индикаторе, были хорошо различимы. Лазерная указка и светодиодный датчик устанавливаются друг напротив друга. Также потребуется небольшая непрозрачная линейка, которая будет использоваться для проверки пересечения луча.

Для начала следует добиться точного физического попадания луча лазера на корпус мигающего светодиода, при этом включать калькулятор пока не требуется. После того, как луч указки начнет попадать на светодиод, можно включить калькулятор и все устройство будет функционировать в режиме подсчета.

Запуск лазерного сенсора

Запуск сенсора осуществляется в следующей последовательности:

  • Перед тем, как включить лазерную указку, необходимо осуществить подготовку калькулятора. Для этого нужно включить калькулятор и поочередно нажать клавиши «1», «+» и «=». Каждую из этих кнопок необходимо нажать только один раз! Набрав такую последовательность символов калькулятор переводится в режим подсчета, при этом показания будут увеличиваться каждый раз на единицу.
  • Теперь лазерную указку можно включить. При точнейшей настройке лазерный луч должен оказать свое влияние на светодиод и поменять показание на индикаторе калькулятора на единицу. После того, как это произошло, на индикаторе должна загореться цифра “2”.
  • Далее делаем так чтобы подсчет начался с нуля. С этой целью, не отключая указку, временно накрываем рукой ее луч и нажимаем на калькуляторе кнопку “ноль”.
  • Затем убираем руку и используем предмет, предназначенный для тестирования готового лазерного сенсора. При каждом из пересечений показания индикатора калькулятора будут изменяться на единицу. Вот так и будет осуществляться подсчет количества пересечений.

Во время того, как лазерный луч приходит на мигающий светодиод, клавиатура находится в заблокированном режиме и последовательное нажатие клавиш «1», «+» и «=» не приводит ни к чему. Для разблокировки кнопок необходимо на некоторое время прикрыть лазерный луч рукой.

Если подсчет пересечений работает некорректно либо вообще не работает, то следует проверить устройство на предмет наличия возможных неисправностей

  • Если свет от лазерной указки слишком слаб, то необходима замена батарейки, либо просто неисправна сама указка (китайская, что ж с нее взять);
  • Отсутствует физическое попадание луча лазера на корпус светодиода – в этом случае необходимо произвести подстройку устройства;
  • Неправильно выполнена поочередность нажатия клавиш для запуска – это ошибка;
  • Вместо мигающего светодиода в 3-х миллиметровом корпусе был установлен светодиод в корпусе 5 мм – это ошибка.

Возможно неправильное подключение мигающего светодиода. В таком случае необходимо перепаять светодиод наоборот и вновь провести проверку работоспособности устройства. Как показывают эксперименты, качество функционирования сенсоров находится в прямой зависимости от качества работы самой лазерной указки, а также точности попадания луча лазера на корпус светодиода.

Сборка лазерного сенсора завершена.

Для эффективной защиты имущества, находящегося в доме или квартире придумано и реализовано много разных систем безопасности. В основном, наиболее часто устанавливаются различного рода сигнализации, поддерживающие широкий спектр различных датчиков – это позволяет максимально эффективно контролировать все происходящее на объекте. Одним из устройств, которыми комплектуются современные системы охраны, является лазерный датчик движения, который способен уловить малейшее перемещение в охраняемой зоне. Отличительной особенностью таких устройств является не только их высокая чувствительность к перемещениям, а также и то, что лазерный датчик своими руками сделать достаточно просто. И, что главное, для этого не потребуются какие-либо дорогостоящие детали.

Область применения

Учитывая высокую эффективность детектирования движения с помощью такого типа датчиков, они устанавливаются на следующих объектах:

Учитывая большую стоимость сигнализации на основе лазерных датчиков их «заводские версии» применяют в первых двух случаях. Для частных коттеджей и квартир лазерный детектор движения можно сделать и собственноручно.

Принцип работы

Функционирование лазерного датчика основано на использовании излучателя и приемника лазерного луча. Первый из них генерирует световой поток, который попадает на установленный напротив излучателя фотоэлемент.

Когда на фотоприемник луч лазера не попадает, его сопротивление очень большое, а при облучении световым лучом начинает формироваться поток фотоэлектронов, что приводит к увеличению проводимости и уменьшению электросопротивления фотоэлемента.

Пока чувствительный элемент облучается лучом, электрическая схема сигнализации является замкнутой и контакты релейной системы, управляющей внешними устройствами, остаются в исходном положении. Как только луч прерывается, происходит резкое увеличение сопротивления фотоэлемента – это обеспечивает размыкание электрической цепи и переключение релейной системы, что приводит к срабатыванию внешних исполнительных механизмов.

Принцип функционирования одинаков, что в «заводских» лазерных датчиках, что в тех, которые были созданы своими руками.

Конструкция

Для того чтобы самостоятельно сделать датчик движения на основе применения лазерного излучения потребуются базовые знания электроники, умение паять и недорогой набор комплектующих. Чтобы создать лазерный датчик в домашних условиях потребуется следующий набор:

  • лазерный излучатель;
  • фотоприемник;
  • релейный узел;
  • блок питания излучателя;
  • монтажные детали;
  • проводники;
  • набор для пайки;
  • набор инструментария.

В качестве излучателя можно выбрать лазерную указку, брелок, лазер, входящий в состав детских игрушек. Роль детектора излучения может эффективно выполнять обычный фоторезистор, сопротивление которого меняется при его облучении световым лучом. Наличие релейного механизма позволит управлять работой внешних устройств в момент, когда срабатывает датчик.

Создание датчика на основе указки является наиболее простой схемой, которую каждый в силах реализовать своими руками.

Инструкция по сбору лазерного датчика

Лазерный датчик движения состоит из двух основных элементов – излучателя и приемника генерируемого луча света. В роли излучателя, как уже говорилось выше, будет использована обычная лазерная указка. Поскольку она питается от нескольких батареек с небольшой емкостью, то изначально следует переработать ее систему питания. Чтобы получить требуемый номинал напряжения можно использовать низковольтный блок с включением его через реостат или после модернизации его функциональной части посредством установки дополнительного регулирующего резистора на выходе. Применение такого типа системы питания позволит получать непрерывный луч, генерирование которого будет происходить до тех пор, пока будет напряжение в сети, к которой подключен блок питания.

Приемник излучения будет построен на основе фоторезистора, который меняет свое сопротивления при попадании на него светового излучения. Чтобы он не реагировал на солнечный свет, который будет присутствовать в месте установки, его следует поместить в достаточно глубокий тубус темного цвета. Это исключит попадание внешнего освещения и ложных срабатываний сигнализации, в составе которой будет работать созданный своими руками лазерный детектор.

Обратите внимание!

Чтобы датчик работал корректно, важно чтобы его излучатель и приемная часть располагались строго на одной оси. Это будет гарантировать, что лазерный луч будет попадать по центру фоторезистора, обеспечивая четкое срабатывание сигнализации в момент его перекрытия.

При установке датчика в состав охранной сигнализации к нему подключается релейная система. Она обеспечивает управление работой внешних исполнительных устройств в момент перекрытия. Через реле также подключается и система питания датчика. Это сделано для того, чтобы после включения сигнализации, когда сработал лазерный датчик, она не отключилась в тот момент, когда луч снова попадет на фотоэлемент. Благодаря этой схеме при единократном прерывании лазерного луча сигнализация будет работать постоянно, пока ее не отключат со специальной кнопки.

Заключение

Собрать датчик движения на основе лазера является достаточно простой задачей. Для реализации такого проекта достаточно небольших финансовых вложений, которые позволят на выходе получить элемент сигнализации, которая в «заводском» исполнении стоит достаточно больших денег. По функциональности самодельный лазерный датчик практически не уступает тому, который сделан в производственных условиях. Отличием самодельного датчика является возможность его простой модернизации. Меняя мощность лазера, и используя отражатели в виде зеркал, можно формировать лазерные ловушки, которые будут покрывать всю площадь охраняемого объекта.

Лазерные и оптические датчики скорости/длины производства
ООО «ПТП «Сенсорика-М»

Главные отличительные черты лазерного датчика ИСД-5 :

  • Возможность работы по любым поверхностям, включая стекло
  • Широкий диапазон номинальных расстояний до поверхности: от 10 см до 130 см.
  • Оригинальный моноблочный расщепитель пучка, обеспечивающий стабильность интерференционной картины и широкий диапазон допустимых изменений расстояния до объекта (до ±30% от номинально).
  • Термоскомпенсированная конструкция, обеспечивающая стабильность измерений в широком диапазоне температур без термостабилизации измерителя.
  • Небольшая потребляемая мощность датчика (0,5 - 2 Вт в зависимости от используемого лазера) и микроконтроллерного блока обработки сигнала (1 Вт).

Главные отличительные черты оптического датчика ИСД-3 :

  • Прецизионные измерения: 0,15 %
  • Широкий диапазон номинальных расстояний до поверхности: от 10 см до 180 см -1 вариант. От 1м до 3 м - 2ой вариант.
  • Большая светосила оптики, поскольку нет необходимости диафрагмирования. Как следствие, для освещения объекта достаточно 10 Вт галогенной лампы и во многих случаях даже 1,2 Вт ИК-диода.
  • Широкий динамический диапазон яркости объекта – при измерениях она может изменяться до 100000 раз и резкие перепады яркости не искажают измерений.
  • Низкая чувствительность к загрязнению оптики.
  • Легкий, но прочный и герметичный корпус, класс защиты от окружающей среды - IP67.

Какой датчик выбрать?

Оптический:

  • В основном для наружных применений и в жестких условиях эксплуатации (температурный диапазон, влажность, запыленность)
  • Возможность измерять большие скорости движения
  • Большие колебания положения объекта (область измерения 2х5 см и более)

Лазерный:

  • В основном для внутрицеховых применений (системы раскроя и учета…)
  • Возможность измерять низкие скорости движения
  • Измерение малых длин
  • Виброизмерения поперечных колебаний с высоким разрешением

Часто области применений перекрываются

Лазерный - как дорожный датчик при измерении дистанций до 200 Км на скоростях до 140 Км/ч, оптический – измерение длины кабеля при его значительной вибрации и т.п.

Параллельное измерение дистанции на дороге лазерным и оптическим датчиком:

Измеренная дистанция по ИСД-3, м

Измеренная дистанция по ИСД-5, м

Отн. Разница, %

0,07 %
0,016 %

Точное измерение длины по импульсному выходу

Задача: имеется длинный материал (металлический лист в бухте и т.п.), который надо нарезать на куски определенной длины. Длина определяется по скорости (L=V*dt), которая измеряется, например, с частотой 40 Гц. Тогда при скорости, например, 4 м/с длина вычисляется через каждые 10 см, чего недостаточно.

Однако, имеется импульсный выход, позволяющий разбить дискретность длины между измерениями с любым разрешением (1 мм (1000 имп/м) и менее).

Таким образом, датчик может выдавать дискретность измеренной длины с любым разрешением, и конечная точность нарезки определяется уже исполнительным механизмом

Принцип измерения