Общая характеристика алюминия. Строение атома алюминия

Алюминий в чистом виде впервые выделен Фридрихом Велером. Немецкий химик нагрел безводный хлорид элемента с металлическим калием. Произошло это во 2-ой половине 19-го века. До 20-го столетия кг алюминия стоил дороже .

Новый металл позволяли себе лишь богачи и государственные . Причина высокой стоимости – сложность отделения алюминия от других веществ. Метод добычи элемента в промышленных масштабах предложил Чарльз Холл.

В 1886-ом году он растворил оксид в расплаве криолита. Немец заключил смесь в гранитный сосуд и подключил к нему электрический ток. На дно емкости осели бляшки чистого металла.

Химические и физические свойства алюминия

Какой алюминий? Серебристо-белый, блестящий. Поэтому, Фридрих Велер сравнивал полученные им гранулы металла с . Но, была оговорка, — алюминий значительно легче.

Пластичность же приближена к драгоценным и . Алюминий – вещество , без проблем вытягивающееся в тонкую проволоку и листы. Достаточно вспомнить фольгу. Она делается на основе 13-го элемента.

Алюминий легок за счет небольшой плотности. Она втрое меньше, чем у и железа. При этом в прочности 13-ый элемент почти не уступает.

Такое сочетание сделало серебристый металл незаменимым в промышленности, к примеру, производстве деталей для автомобилей. Речь идет и о кустарном производстве, ведь сварка алюминия возможна даже в домашних условиях.

Формула алюминия позволяет активно отражать световые, но и тепловые лучи. Высока и электропроводность элемента. Главное, излишне не нагревать его. При 660-ти градусах расплавится. Поднимись температура чуть выше – сгорит.

Металл исчезнет, останется лишь оксид алюминия . Он образуется и в стандартных условиях, но лишь в виде поверхностной пленки. Она защищает металл. Поэтому, он неплохо противостоит коррозии, ведь доступ кислорода блокирован.

Оксидная пленка защищает металл и от воды. Если удалить с поверхности алюминия налет, запустится реакция с Н 2 О. Выделение газов водорода произойдет даже при комнатной температуре. Так что, алюминиевая лодка не превращается в дым лишь за счет оксидной пленки и защитной краски, нанесенной на корпус судна.

Наиболее активно взаимодействие алюминия с неметаллами. Реакции с бромом и хлором проходят даже при обычны условиях. В итоге, образуются соли алюминия . Соли водорода получаются, если соединить 13-ый элемент с растворами кислот. Реакция состоится и со щелочами, но лишь после удаления оксидной пленки. Выделится чистый водород.

Применение алюминия

Металл напыляют на зеркала. Пригождаются высокие показатели отражения света. Процесс проходит в условиях вакуума. Изготавливают не только стандартные зеркала, но предметы с зеркальными поверхностями. Таковыми становятся: керамическая плитка, бытовая техника, светильники.

Дуэт алюминий-медь – основа дюралюминий. Попросту его называют дюраль. В качестве добавляют . Состав прочнее чистого алюминия в 7 раз, поэтому, подходит для области машиностроения и авиаконструирования.

Медь придает 13-му элементу прочность, но не тяжесть. Дюраль остается в 3 раза легче железа. Небольшая масса алюминия – залог легкости авто, самолетов, кораблей. Это упрощает перевозку, эксплуатацию, снижает цену продукции.

Купить алюминий автопромышленники стремятся еще и потому, что на его сплавы легко наносятся защитные и декоративные составы. Краска ложится быстрее и ровнее, чем на сталь, пластик.

При этом, сплавы податливы, просто обрабатываются. Это ценно, учитывая массу изгибов и конструктивных переходов на современных моделях автомобилей.

13-ый элемент не только легко красится, но и сам может выступать в роли красителя. В текстильной промышленности закупается сульфат алюминия . Он же пригождается в печатном деле, где требуются нерастворимые пигменты.

Интересно, что раствор сульфата алюминия применяют еще и для очистки воды. В присутствии «агента» вредные примеси выпадают в осадок, нейтрализуются.

Нейтрализует 13-ый элемент и кислоты. Особенно хорошо с этой ролью справляется гидроксид алюминия . Его ценят в фармакологии, медицине, добавляя в лекарства от изжоги.

Выписывают гидроксид и при язвах, воспалительных процессах кишечного тракта. Так что в аптечных препарата тоже есть алюминий. Кислота в желудке – повод узнать о таких лекарствах побольше.

В СССР и бронзы с 11-процентной добавкой алюминия чеканили . Достоинство знаков – 1, 2 и 5 копеек. Начали выпускать в 1926-ом, закончили в 1957-ом году. А вот производство алюминиевых банок для консервов не прекратили.

Тушенку, сайру и прочие завтраки туристов до си пор упаковывают в тару на основе 13-го элемента. Такие банки не вступают в реакцию с продуктами питания, при этом, легки и дешевы.

Порошок алюминия входит в состав многих взрывчатых смесей, в том числе и пиротехники. В промышленности применяют подрывные механизмы на основе тринитротолуола и измельченного 13-го элемента. Мощная взрывчатка получается и при добавлении к алюминию аммиачной селитры.

В нефтяной отрасли необходим хлорид алюминия . Он играет роль катализатора при разложении органики на фракции. У нефти есть свойство выделять газообразные, легкие углеводороды бензинового типа, взаимодействуя с хлоридом 13-го металла. Реагент должен быть безводным. После добавления хлорида, смесь прогревают до 280-ти градусов Цельсия.

В строительстве нередко смешиваю натрий и алюминий . Получается присадка к бетону. Алюминат натрия ускоряет его затвердение за счет убыстрения гидратации.

Повышается скорость микрокристаллизации, значит, увеличивается прочность и твердость бетона. К тому же, алюминат натрия спасает арматуру, уложенную в раствор, от коррозии.

Добыча алюминия

Металл замыкает тройку самых распространенных на земле. Это объясняет его доступность и широкое применение. Однако, в чистом виде природа элемент человеку не дает. Алюминий приходится выделять из различных соединений. Больше всего 13-го элемента в бокситах. Это глиноподобные породы, сосредоточенные, в основном, в тропическом поясе.

Бокситы дробят, потом сушат, снова дробят и перемалывают в присутствии небольшого объема воды. Получается густая масса. Ее нагревают паром. При этом большая часть , коим бокситы тоже не бедны, испаряется. Остается оксид 13-го металла.

Его помещают в промышленные ванны. В них уже находится расплавленный криолит. Температура держится на отметке 950 градусов Цельсия. Нужен и электрический ток силой минимум в 400 кА. То есть, используется электролиз, как и 200 лет назад, когда элемент выделял Чарльз Холл.

Проходя через раскаленный раствор, ток разрывает связи между металлом и кислородом. В итоге, на дне ванн остается чистый алюминий. Реакции окончены. Завершает процесс отливание из осадка и их отправка потребителю, или же, использование для формирования различных сплавов.

Основные производства алюминия находятся там же, где и залежи бокситов. В передовика – Гвинея. В ее недрах скрыто почти 8 000 000 тонн 13-го элемента. На 2-ом месте Австралия с показателем в 6 000 000. В Бразилии алюминия уже в 2 раза меньше. Общемировые же запасы оцениваются в 29 000 000 тонн.

Цена алюминия

За тонну алюминия просят почти 1 500 долларов США. Таковы данные бирж цветных металлов на 20 января 2016-го. Стоимость устанавливается, в основном, промышленниками. Точнее, на цену алюминия влияет их спрос на сырье. Влияет на запросы поставщиков и стоимость электроэнергии, ведь производство 13-го элемента энергоемко.

Иные цены установлены на алюминия. Он идет на переплавку. Стоимость оглашается за килограмм, причем, имеет значение характер сдаваемого материала.

Так, за электротехнический металл дают примерно 70 рублей. За пищевой алюминий можно получить на 5-10 рублей меньше. Столько же платят за моторный металл. Если сдается разносортица, ее цена – 50-55 рублей за килограмм.

Самый дешевый вид лома – стружка алюминия. За нее удается выручить лишь 15-20 рублей. Чуть больше дадут за из 13-го элемента. Имеется в виду тара из-под напитков, консервов.

Невысоко ценят и алюминиевые радиаторы. Цена за килограмм лома – около 30-ти рублей. Это усредненные показатели. В разных регионах, на разных точках алюминий принимают дороже, либо дешевле. Нередко стоимость материалов зависит от сдаваемых объемов.

Алюми́ний - элемент 13-й группы периодической таблицы химических элементов, третьего периода, с атомным номером 13. Относится к группе лёгких металлов. Наиболее распространённый металл и третий по распространённости химический элемент в земной коре (после кислорода и кремния).

Простое вещество алюминий - лёгкий, парамагнитный металл серебристо-белогоцвета, легко поддающийся формовке, литью, механической обработке. Алюминий обладает высокой тепло- иэлектропроводностью, стойкостью к коррозии за счёт быстрого образования прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия.

Современный метод получения, процесс Холла-Эру. Он заключается в растворении оксида алюминия Al2O3 в расплаве криолита Na3AlF6 с последующим электролизом с использованием расходуемых коксовых илиграфитовых анодных электродов. Такой метод получения требует очень больших затрат электроэнергии, и поэтому получил промышленное применение только в XX веке.

Лабораторный способ получения алюминия: восстановлением металлическим калием безводного хлорида алюминия (реакция протекает при нагревании без доступа воздуха):

Металл серебристо-белого цвета, лёгкий, плотность - 2,7 г/см³, температура плавления у технического алюминия - 658 °C, у алюминия высокой чистоты - 660 °C, высокая пластичность: у технического - 35 %, у чистого - 50 %, прокатывается в тонкий лист и даже фольгу. Алюминий обладает высокой электропроводностью (37·106 См/м) и теплопроводностью (203,5 Вт/(м·К)), 65 %, обладает высокой светоотражательной способностью.

Алюминий образует сплавы почти со всеми металлами. Наиболее известны сплавы с медью и магнием (дюралюминий) и кремнием(силумин).

По распространённости в земной коре Земли занимает 1-е место среди металлов и 3-е место среди элементов, уступая только кислороду и кремнию. Массовая концентрация алюминия в земной коре по данным различных исследователей оценивается от 7,45 до 8,14 %. В природе алюминий, в связи с высокой химической активностью, встречается почти исключительно в виде соединений.

Природный алюминий состоит практически полностью из единственного стабильного изотопа 27Al с ничтожными следами 26Al, наиболее долгоживущего радиоактивного изотопа с периодом полураспада 720 тыс. лет, образующегося в атмосфере при расщеплении ядер аргона 40Ar протонами космических лучей с высокими энергиями.

При нормальных условиях алюминий покрыт тонкой и прочной оксидной плёнкой и потому не реагирует с классическими окислителями: с H2O (t°), O2, HNO3 (без нагревания). Благодаря этому алюминий практически не подвержен коррозии и потому широко востребован современной промышленностью. Однако при разрушении оксидной плёнки (например, при контакте с растворами солей аммония NH4+, горячими щелочами или в результате амальгамирования), алюминий выступает как активный металл-восстановитель. Не допустить образования оксидной пленки можно, добавляя к алюминию такие металлы как галлий,индий или олово. При этом поверхность алюминия смачивают легкоплавкие эвтектики на основе этих металлов.


Легко реагирует с простыми веществами:

с кислородом, образуя оксид алюминия:

с галогенами (кроме фтора), образуя хлорид, бромид или иодид алюминия:

с другими неметаллами реагирует при нагревании:

со фтором, образуя фторид алюминия:

с серой, образуя сульфид алюминия:

с азотом, образуя нитрид алюминия:

с углеродом, образуя карбид алюминия:

Сульфид и карбид алюминия полностью гидролизуются:

Со сложными веществами:

с водой (после удаления защитной оксидной пленки, например, амальгамированием или растворами горячей щёлочи):

со щелочами (с образованием тетрагидроксоалюминатов и других алюминатов):

Легко растворяется в соляной и разбавленной серной кислотах:

При нагревании растворяется в кислотах - окислителях, образующих растворимые соли алюминия:

восстанавливает металлы из их оксидов (алюминотермия):

44.Соединения алюминия, их амфотерные свойства

Электронная конфигурация внешнего уровня алюминия … 3s23p1.

В возбужденном состоянии один из s-электронов переходит на свободную ячейку p-подуровня, такое состояние отвечает валентности III и степени окисления +3. Во внешнем электронном слое атома алюминия существуют свободные d-подуровни.

Важнейшие природные соединения – алюмосиликаты:

белая глина Al2O3 ∙ 2SiO2 ∙ 2H2O, полевой шпат K2O ∙ Al2O3 ∙ 6SiO2, слюда K2O ∙ Al2O3 ∙ 6SiO2 ∙ H2O

Из других природных форм нахождения алюминия наибольшее значение имеют бокситы А12Оз ∙ nН2О, минералы корунд А12Оз и криолит А1Fз ∙3NaF.

Легкий, серебристо-белый, пластичный металл, хорошо проводит электрический ток и тепло.

На воздухе алюминий покрывается тончайшей (0,00001 мм), но очень плотной пленкой оксида, предохраняющей металл от дальнейшего окисления и придающей ему матовый вид.

Оксид алюминия А12О3

Белое твердое вещество, нерастворимое в воде, температура плавления 20500С.

Природный А12О3 - минерал корунд. Прозрачные окрашенные кристаллы корунда - красный рубин – содержит примесь хрома - и синий сапфир - примесь титана и железа - драгоценные камни. Их получают так же искусственно и используют для технических целей, например, для изготовления деталей точных приборов, камней в часах и т.п.

Химические свойства

Оксид алюминия проявляет амфотерные свойства

1. взаимодействие с кислотами

А12О3 +6HCl = 2AlCl3 + 3H2O

2. взаимодействие со щелочами

А12О3 + 2NaOH – 2NaAlO2 + H2O

Al2O3 + 2NaOH + 5H2O = 2Na

3. при накаливании смеси оксида соответствующего металла с порошком алюминия происходит бурная реакция, ведущая к выделению из взятого оксида свободного металла. Метод восстановления при помощи Al (алюмотермия) часто применяют для получения ряда элементов (Cr, Мп, V, W и др.) в свободном состоянии

2А1 + WO3 = А12Оз + W

4. взаимодействие с солями, имеющими сильнощелочную среду, вследствие гидролиза

Al2O3 + Na2CO3 = 2 NaAlO2 + CO2

Гидроксид алюминия А1(ОН)3

А1(ОН)3 представляет собой объемистый студенистый осадок белого цвета, практически нерастворимый в воде, но легко растворяющийся в кислотах и сильных щелочах. Он имеет, следовательно, амфотерный характер.

Получают гидроксид алюминия реакцией обмена растворимых солей алюминия со щелочами

AlCl3 + 3NaOH = Al(OH)3↓ + 3NaCl

Al3+ + 3OH- = Al(OH)3↓

Данную реакцию можно использовать как качественную на ион Al3+

Химические свойства

1. взаимодействие с кислотами

Al(OH)3 +3HCl = 2AlCl3 + 3H2O

2. при взаимодействии с сильными щелочами образуются соответствующие алюминаты:

NaOH + А1(ОН)з = Na

3. термическое разложение

2Al(OH)3 = Al2О3 + 3H2O

Соли алюминияподвергаются гидролизу по катиону, среда кислая (рН < 7)

Al3+ + Н+ОН- ↔ AlОН2+ + Н+

Al(NO3)3 + H2O↔ AlOH(NO3)2 + HNO3

Растворимые соли алюминия и слабых кислот подвергаются полному (необратимому гидролизу)

Al2S3+ 3H2O = 2Al(OH)3 +3H2S

Оксид алюминия Al2O3 – входит в состав некоторых антацидных средств (например, Almagel), используется при повышенной кислотности желудочного сока.

КAl(SO4)3 12H2О – алюмокалиевые квасцы применяются в медицине для лечения кожных заболеваний, как кровоостанавливающие средство. А также используют как дубильное вещество в кожевенной промышленности.

(CH3COO)3Al - Жидкость Бурова- 8% раствор ацетата алюминия оказывает вяжущее и противовоспалительное действие, в больших концентрациях обладает умеренными антисептическими свойствами. Применяется в разведенном виде для полоскания, примочек, при воспалительных заболеваниях кожи и слизистых оболочек.

AlCl3 - применяется в качестве катализатора в органическом синтезе.

Al2(SO4)3 · 18 H20 – применяется при очистки воды.

Тип урока . Комбинированный.

Задачи:

Образовательные:

1. Актуализировать знания учащихся о строении атома, физических смыслах порядкового номера, номера группы, номера периода на примере алюминия.

2. Сформировать у учащихся знания о том, что алюминию в свободном состоянии присущи особые, характерные физические и химические свойства.

Развивающие:

1. Возбудить интерес к изучению науки путем предоставления кратких исторических и научных сообщений о прошлом, настоящем и будущем алюминия.

2. Продолжить формирование исследовательских навыков учащихся при работе с литературой, выполнением лабораторной работы.

3. Расширить понятие амфотерности раскрытием электронного строения алюминия, химических свойств его соединений.

Воспитательные:

1. Воспитывать бережное отношение к окружающей среде, предоставляя сведения о возможном использовании алюминия вчера, сегодня, завтра.

2. Формировать умения работать коллективом у каждого учащегося, считаться с мнением всей группы и отстаивать свое корректно, выполняя лабораторную работу.

3. Знакомить учащихся с научной этикой, честностью и порядочностью естествоиспытателей прошлого, предоставляя сведения о борьбе за право быть первооткрывателем алюминия.

ПОВТОРЕНИЕ ПРОЙДЕННОГО МАТЕРИАЛЛА по темам щелочные и щелочноземельные М (ПОВТОРЕНИЕ):

    Какое количество электронов на внешнем энергетическом уровне щелочных и щелочноземельных М?

    Какие продукты образуются при взаимодействии с кислородом натрия или калия? (пероксид), способен ли литий в реакции с кислородом давать пероксид? (нет, в результате реакции образуется оксид лития.)

    Как получают оксиды натрия и калия? (прокаливанием пероксидов с соответствующими Ме, Пр: 2Na+Na 2 O 2 =2Na 2 O).

    Проявляют ли щелочные и щелочноземельные металлы отрицательные степени окисления? (нет, не имеют, так как являются сильными восстановителями.).

    Как изменяется радиус атома в главных подгруппах (сверху вниз) Переодической системы? (увеличивается), с чем это связано? (с увеличением числа энергетических уровней).

    Какие из изученных нами групп металлов легче воды? (у щелочных).

    При каких условиях идет образование гидридов у щелочноземельных металлов? (при высоких температурах).

    Какое вещество кальций или магний активнее реагирует с водой? (более активно реагирует кальций. Магний активно реагирует с водой только при нагревании ее до 100 0 С).

    Как изменяется растворимость гидроксидов щелочноземельных металлов в воде, в ряду от кальция до бария? (растворимость в воде увеличивается).

    Расскажите про особенности хранения щелочных и щелочноземельных металлов, почему их хранят именно так? (т.к. данные металлы очень реакциоспособны, то их хранят в таре под слоем керосина).

КОНТРОЛЬНАЯ РАБОТА по темам щелочные и щелочноземельные М:

КОНСПЕКТ УРОКА (ИЗУЧЕНЕ НОВОГО МАТЕРИАЛА):

Учитель: Здравствуйте ребята, сегодня мы с вами переходим к изучению IIIА подгруппы. Перечислите элементы расположенные в IIIА подгруппе?

Обучаемые: Она включает в себя такие элементы как бор, алюминий, галлий, индий и таллий.

Учитель: Какое число электронов они содержат на внешнем энергетическом уровне, степени окисления?

Обучаемые: Три электрона, степень окисления +3, хотя для таллия более устойчивой является степень окисления +1.

Учитель: Металлические свойства элементов подгруппы бора выражены значительно слабее, чем у элементов подгруппы бериллия. Бор является неМ. В дальнейшем внутри подгруппы с возрастанием заряда ядра М свойства усиливаются. А l – уже М, но не типичный. Его гидроксид обладает амфотерными свойствами.

Из М главной подгруппы III группы наибольшее значение имеет алюминий, свойства которого мы изучим подробно. Он интересен нам потому, что является переходным элементом.

ОПРЕДЕЛЕНИЕ

Алюминий расположен в третьем периоде, III группе главной (A) подгруппе Периодической таблицы. Это первый p-элемент 3-го периода.

Металл. Обозначение - Al. Порядковый номер - 13. Относительная атомная масса - 26,981 а.е.м.

Электронное строение атома алюминия

Атом алюминия состоит из положительно заряженного ядра (+13), внутри которого находится 13 протонов и 14 нейтронов. Ядро окружено тремя оболочками, по которым движутся 13 электронов.

Рис. 1. Схематическое изображение строения атома алюминия.

Распределение электронов по орбиталям выглядит следующим образом:

13Al) 2) 8) 3 ;

1s 2 2s 2 2p 6 3s 2 3p 1 .

На внешнем энергетическом уровне алюминия находится три электрона, все электроны 3-го подуровня. Энергетическая диаграмма принимает следующий вид:

Теоретически возможно возбужденное состояние для атома алюминия за счет наличия вакантной 3d -орбитали. Однако распаривания электронов 3s -подуровня на деле не происходит.

Примеры решения задач

ПРИМЕР 1

ОПРЕДЕЛЕНИЕ

Алюминий - тринадцатый элемент Периодической таблицы. Обозначение - Al от латинского «aluminium». Расположен в третьем периоде, IIIА группе. Относится к металлам. Заряд ядра равен 13.

Алюминий - самый распространенный в земной коре металл. Он входит в состав глин, полевых шпатов, слюд и многих других минералов. Общее содержание алюминия в земной коре составляет 8% (масс.).

Алюминий - серебристо-белый (рис. 1) легкий металл. Он легко вытягивается в проволоку и прокатывается в тонкие листы.

При комнатной температуре алюминий не изменяется на воздухе, но лишь потому, что его поверхность покрыта тонкой пленкой оксида, обладающего очень сильным защитным действием.

Рис. 1. Алюминий. Внешний вид.

Атомная и молекулярная масса алюминия

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии алюминий существует в виде одноатомных молекул Al, значения его атомной и молекулярной масс совпадают. Они равны 26,9815.

Изотопы алюминия

Известно, что в природе алюминий может находиться в виде одного стабильного изотопа 27 Al. Массовое число равно 27. Ядро атома изотопа алюминия 27 Al содержит тринадцать протонов и четырнадцать нейтронов.

Существуют радиоактивные изотопы алюминия с массовыми числами от 21-го до 42-х, среди которых наиболее долгоживущим является изотоп 26 Al, период полураспада которого составляет 720 тысяч лет.

Ионы алюминия

На внешнем энергетическом уровне атома алюминия имеется три электрона, которые являются валентными:

1s 2 2s 2 2p 6 3s 2 3р 1 .

В результате химического взаимодействия алюминий отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

Al 0 -3e → Al 3+ .

Молекула и атом алюминия

В свободном состоянии алюминий существует в виде одноатомных молекул Al. Приведем некоторые свойства, характеризующие атом и молекулу алюминия:

Сплавы алюминия

Основное применение алюминия - производство сплавов на его основе. Легирующие добавки (например, медь, кремний, магний, цинк, марганец) вводят в алюминий главным образом для повышения его прочности.

Широкое применение имеют дуралюмины, содержащие медь и магний, силумины, в которых основной добавкой служит кремний, магналий (сплав алюминия с 9,5-11,5% магния).

Алюминий - одна из наиболее распространенных добавок в сплавах на основе меди, магния, титана, никеля, цинка и железа.

Примеры решения задач

ПРИМЕР 1

Задание Для сварки рельсов по методу алюмотермии используют смесь алюминия и оксида железа Fe 3 O 4 . Составьте термохимическое уравнение реакции, если при образовании железа массой 1 кг (1000 г) выделяется 6340 кДж тепла.
Решение Запишем уравнение реакции получения железа алюмотермическим методом:

8Al + 3Fe 2 O 3 = 9Fe+ 4Al 2 O 3 .

Найдем теоретическую массу железа (рассчитанная по термохимическому уравнению реакции):

n(Fe) = 9 моль;

m(Fe) = n(Fe) ×M(Fe);

m(Fe) = 9 × 56 = 504 г.

Пусть в ходе реакции выделится х кДж теплоты. Составим пропорцию:

1000 г - 6340 кДж;

504 г - х кДж.

Отсюда х будет равен:

х = 540 ×6340 / 1000 = 3195.

Значит в ходе реакции получения железа алюмотермическим методом выделяется 3195 кДж теплоты. Термохимическое уравнение реакции имеет вид:

8Al + 3Fe 2 O 3 = 9Fe+ 4Al 2 O 3 + 3195 кДж.

Ответ В ходе реакции выделяется 3195 кДж теплоты.

ПРИМЕР 2

Задание Алюминий обработали 200 г 16%-го раствора азотной кислоты, при этом выделился газ. Определите массу и объем выделившегося газа.
Решение Запишем уравнение реакции растворения алюминия в азотной кислоте:

2Al + 6HNO 3 = 2Al(NO 3) 3 + 3H 2 -.

Рассчитаем массу растворенного вещества азотной кислоты:

m(HNO 3) = m solution (HNO 3)×w(HNO 3) / 100%;

m(HNO 3) = 20 ×96% / 100% =19,2 г.

Найдем количество вещества азотной кислоты:

M(HNO 3) = Ar(H) + Ar(N) + 3×Ar(O) = 1 + 14 + 3×16 = 63 г/моль.

n(HNO 3) = m (HNO 3) / M(HNO 3);

n(HNO 3) = 19,2 / 63 = 0,3моль.

Согласно уравнению реакцииn(HNO 3) :n(H 2) = 6:3, т.е.

n(H 2) = 3×n(HNO 3) / 6 = ½ ×n(HNO 3) = ½ × 0,3 = 0,15 моль.

Тогда масса и объем выделившегося водорода будут равны:

M(H 2) = 2×Ar(H) = 2×1 = 2 г/моль.

m(H 2) = n(H 2) ×M(H 2) = 0,15×2 = 0,3г.

V(H 2) = n(H 2) ×V m ;

V(H 2) = 0,15× 22,4 = 3,36л.

Ответ В результате реакции выделяется водород массой 0,3 г и объемом 3,36 л.