Описание тэц. Смотреть что такое "Теплоэлектроцентраль" в других словарях. Как работает парогазовый энергоблок

Назначение теплоэлектроцентралей. Принципиальная схема ТЭЦ

ТЭЦ (теплоэлектроцентрали) - предназначены для централизованного снабжения потребителей теплом и электроэнергией. Их отличие от КЭС в том, что они используют тепло отработавшего в турбинах пара для нужд производства, отопления, вентиляции и горячего водоснабжения. Из-за такого совмещения выработки электроэнергии и тепла достигается значительная экономия топлива в сравнении с раздельным энергоснабжением (выработкой электроэнергии на КЭС и тепловой энергии на местных котельных). Благодаря такому способу комбинированного производства, на ТЭЦ достигается достаточно высокий КПД, доходящий до 70%. Поэтому ТЭЦ получили широкое распространение в районах и городах с высоким потреблением тепла. Максимальная мощность ТЭЦ меньше, чем КЭС.

ТЭЦ привязаны к потребителям, т.к. радиус передачи теплоты (пара, горячей воды) составляет приблизительно 15 км. Загородные ТЭЦ передают горячую воду при более высокой начальной температуре на расстояние до 30 км. Пар для производственных нужд давлением 0.8-1.6 МПа может быть передан на расстояние не более 2-3 км. При средней плотности тепловой нагрузки мощность ТЭЦ обычно не превышает 300-500 МВт. Только в крупных городах, таких как Москва или Санкт-Петербург с большой плотностью тепловой нагрузки имеет смысл строить станции мощностью до 1000-1500 МВт.

Мощность ТЭЦ и тип турбогенератора выбирают в соответствии с потребностями в тепле и параметрами пара, используемого в производственных процессах и для отопления. Наибольшее применение получили турбины с одним и двумя регулируемыми отборами пара и конденсаторами (см. рис). Регулируемые отборы позволяют регулировать выработку тепла и электроэнергии.

Режим ТЭЦ - суточный и сезонный - определяется в основном потреблением тепла. Станция работает наиболее экономично, если ее электрическая мощность соответствует отпуску тепла. При этом в конденсаторы поступает минимальное количество пара. Зимой, когда спрос на тепло максимален, при расчетной температуре воздуха в часы работы промпредприятий нагрузка генераторов ТЭЦ близка к номинальной. В периоды, когда потребление тепла мало, например летом, а также зимой при температуре воздуха выше расчетной и в ночные часы электрическая мощность ТЭЦ, соответствующая потреблению тепла, уменьшается. Если энергосистема нуждается в электрической мощности, ТЭЦ должна перейти в смешанный режим, при котором увеличивается поступление пара в части низкого давления турбин и в конденсаторы. Экономичность электростанции при этом снижается.

Максимальная выработка электроэнергии теплофикационными станциями "на тепловом потреблении" возможна только при совместной работе с мощными КЭС и ГЭС , принимающими на себя значительную часть нагрузки в часы снижения потребления тепла.



1 – электрический генератор; 2 – паровая турбина; 3 – пульт управления; 4 – деаэратор; 5 и 6 – бункеры; 7 – сепаратор; 8 – циклон; 9 – котел; 10 – поверхность нагрева (теплообменник); 11 – дымовая труба; 12 – дробильное помещение; 13 – склад резервного топлива; 14 – вагон; 15 – разгрузочное устройство; 16 – конвейер; 17 – дымосос; 18 – канал; 19 – золоуловитель; 20 – вентилятор; 21 – топка; 22 – мельница; 23 – насосная станция; 24 – источник воды; 25 – циркуляционный насос; 26 – регенеративный подогреватель высокого давления; 27 – питательный насос; 28 – конденсатор; 29 – установка химической очистки воды; 30 – повышающий трансформатор; 31 – регенеративный подогреватель низкого давления; 32 – конденсатный насос.

На схеме, представленной ниже, отображен состав основного оборудования тепловой электрической станции и взаимосвязь ее систем. По этой схеме можно проследить общую последовательность технологических процессов протекающих на ТЭС.

Обозначения на схеме ТЭС:

  1. Топливное хозяйство;
  2. подготовка топлива;
  3. промежуточный пароперегреватель;
  4. часть высокого давления (ЧВД или ЦВД);
  5. часть низкого давления (ЧНД или ЦНД);
  6. электрический генератор;
  7. трансформатор собственных нужд;
  8. трансформатор связи;
  9. главное распределительное устройство;
  10. конденсатный насос;
  11. циркуляционный насос;
  12. источник водоснабжения (например, река);
  13. (ПНД);
  14. водоподготовительная установка (ВПУ);
  15. потребитель тепловой энергии;
  16. насос обратного конденсата;
  17. деаэратор;
  18. питательный насос;
  19. (ПВД);
  20. шлакозолоудаление;
  21. золоотвал;
  22. дымосос (ДС);
  23. дымовая труба;
  24. дутьевой вентилятов (ДВ);
  25. золоуловитель.

Описание технологической схемы ТЭС:

Обобщая все вышеописанное, получаем состав тепловой электростанции:

  • топливное хозяйство и система подготовки топлива;
  • котельная установка: совокупность самого котла и вспомогательного оборудования;
  • турбинная установка: паровая турбина и ее вспомогательное оборудование;
  • установка водоподготовки и конденсатоочистки;
  • система технического водоснабжения;
  • система золошлокоудаления (для ТЭС, работающих, на твердом топливе);
  • электротехническое оборудование и система управления электрооборудованием.

Топливное хозяйство в зависимости от вида используемого на станции топлива включает приемно-разгрузочное устройство, транспортные механизмы, топливные склады твердого и жидкого топлива, устройства для предвари-тельной подготовки топлива (дробильные установки для угля). В состав ма-зутного хозяйства входят также насосы для перекачки мазута, подогреватели мазута, фильтры.

Подготовка твердого топлива к сжиганию состоит из размола и сушки его в пылеприготовительной установке, а подготовка мазута заключается в его подогреве, очистке от механических примесей, иногда в обработке спецприсадками. С газовым топливом все проще. Подготовка газового топлива сводится в основном к регулированию давления газа перед горелками котла.

Необходимый для горения топлива воздух подается в топочное пространство котла дутьевыми вентиляторами (ДВ). Продукты сгорания топлива — дымовые газы — отсасываются дымососами (ДС) и отводятся через дымовые трубы в атмосферу. Совокупность каналов (воздуховодов и газоходов) и различных элементов оборудования, по которым проходит воздух и дымовые газы, образует газовоздушный тракт тепловой электростанции (теплоцентрали). Входящие в его состав дымососы, дымовая труба и дутьевые вентиляторы составляют тягодутьевую установку. В зоне горения топлива входящие в его состав негорючие (минеральные) примеси претерпевают химико-физические превращения и удаляются из котла частично в виде шлака, а значительная их часть выносится дымовыми газами в виде мелких частиц золы. Для защиты атмосферного воздуха от выбросов золы перед дымососами (для предотвращения их золового износа) устанавливают золоуловители.

Шлак и уловленная зола удаляются обычно гидравлическим способом на золоотвалы.

При сжигании мазута и газа золоуловители не устанавливаются.

При сжигании топлива химически связанная энергия превращается в тепловую. В результате образуются продукты сгорания, которые в поверхностях нагрева котла отдают теплоту воде и образующемуся из нее пару.

Совокупность оборудования, отдельных его элементов, трубопроводов, по которым движутся вода и пар, образуют пароводяной тракт станции.

В котле вода нагревается до температуры насыщения, испаряется, а образующийся из кипящей котловой воды насыщенный пар перегревается. Из котла перегретый пар направляется по трубопроводам в турбину, где его тепловая энергия превращается в механическую, передаваемую на вал турбины. Отработавший в турбине пар поступает в конденсатор, отдает теплоту охлаждающей воде и конденсируется.

На современных ТЭС и ТЭЦ с агрегатами единичной мощностью 200 МВт и выше применяют промежуточный перегрев пара. В этом случае турбина имеет две части: часть высокого и часть низкого давления. Отработавший в части высокого давления турбины пар направляется в промежуточный перегреватель, где к нему дополнительно подводится теплота. Далее пар возвращается в турбину (в часть низкого давления) и из нее поступает в конденсатор. Промежуточный перегрев пара увеличивает КПД турбинной установки и повышает надежность ее работы.

Из конденсатора конденсат откачивается конденсационным насосом и, пройдя через подогреватели низкого давления (ПНД), поступает в деаэратор. Здесь он нагревается паром до температуры насыщения, при этом из него выделяются и удаляются в атмосферу кислород и углекислота для предотвращения коррозии оборудования. Деаэрированная вода, называемая питательной, насосом подается через подогреватели высокого давления (ПВД) в котел.

Конденсат в ПНД и деаэраторе, а также питательная вода в ПВД подогреваются паром, отбираемым из турбины. Такой способ подогрева означает возврат (регенерацию) теплоты в цикл и называется регенеративным подогревом. Благодаря ему уменьшается поступление пара в конденсатор, а следовательно, и количество теплоты, передаваемой охлаждающей воде, что приводит к повышению КПД паротурбинной установки.

Совокупность элементов, обеспечивающих конденсаторы охлаждающей водой, называется системой технического водоснабжения. К ней относятся: источник водоснабжения (река, водохранилище, башенный охладитель — градирня), циркуляционный насос, подводящие и отводящие водоводы. В конденсаторе охлаждаемой воде передается примерно 55% теплоты пара, поступающего в турбину; эта часть теплоты не используется для выработки электроэнергии и бесполезно пропадает.

Эти потери значительно уменьшаются, если отбирать из турбины частично отработавший пар и его теплоту использовать для технологических нужд промышленных предприятий или подогрева воды на отопление и горячее водоснабжение. Таким образом, станция становится теплоэлектроцентралью (ТЭЦ), обеспечивающей комбинированную выработку электрической и тепловой энергии. На ТЭЦ устанавливаются специальные турбины с отбором пара — так называемые теплофикационные. Конденсат пара, отданного тепловому потребителю, возвращается на ТЭЦ насосом обратного конденсата.

На ТЭС существуют внутренние потери пара и конденсата, обусловленные неполной герметичностью пароводяного тракта, а также невозвратным расходом пара и конденсата на технические нужды станции. Они составляют приблизительно 1 — 1,5% от общего расхода пара на турбины.

На ТЭЦ могут быть и внешние потери пара и конденсата, связанные с отпуском теплоты промышленным потребителям. В среднем они составляют 35 — 50%. Внутренние и внешние потери пара и конденсата восполняются предварительно обработанной в водоподготавливающей установке добавочной водой.

Таким образом, питательная вода котлов представляет собой смесь турбинного конденсата и добавочной воды.

Электротехническое хозяйство станции включает электрический генератор, трансформатор связи, главное распределительное устройство, систему электроснабжения собственных механизмов электростанции через трансформатор собственных нужд.

Система управления осуществляет сбор и обработку информации о ходе технологического процесса и состоянии оборудования, автоматическое и дистанционное управление механизмами и регулирование основных процессов, автоматическую защиту оборудования.

Снабжение населения теплом и электроэнергией является одной из основных задач государства. Кроме того, без выработки электричества невозможно представить себе развитую производящую и перерабатывающую промышленность, без которой экономика страны не может существовать в принципе.

Одним из способов решения проблемы нехватки энергии является строительство ТЭЦ. Расшифровка этого термина довольно проста: это так называемая теплоэлектроцентраль, являющаяся одной из наиболее распространенных разновидностей тепловых электростанций. В нашей стране они весьма распространены, так как работают на органическом ископаемом топливе (уголь), к характеристикам которого предъявляют весьма скромные требования.

Особенности

Вот что такое ТЭЦ. Расшифровка понятия вам уже знакома. Но какие же особенности имеет данная разновидность электростанций? Ведь неслучайно же их выделяют в отдельную категорию!?

Дело в том, что они вырабатывают не только электроэнергию, но и тепло, которое подается потребителям в виде горячей воды и пара. Нужно заметить, что электричество является побочным продуктом, так как пар, который подается в системы отопления, сперва вращает турбины генераторов. Комбинирование двух предприятий (котельной и электростанции) хорошо тем, что удается значительно сократить потребление топлива.

Впрочем, это же приводит к довольно незначительному «ареалу распространения» ТЭЦ. Расшифровка проста: так как от станции подается не только электричество, которое с минимальными потерями можно транспортировать на тысячи километров, но и нагретый теплоноситель, их нельзя располагать на значительном удалении от населенного пункта. Неудивительно, что практически все ТЭЦ построены в непосредственной близости от городов, жителей которых они отапливают и освещают.

Экологическое значение

Благодаря тому, что при постройке такой электростанции удается избавиться от многих старых городских котельных, которые играют чрезвычайно негативную роль в экологическом состоянии района (огромное количество копоти), чистоту воздуха в городе порой удается повысить на порядок. Кроме того, новые ТЭЦ позволяют ликвидировать завалы мусора на городских свалках.

Новейшее очистительное оборудование позволяет эффективно очищать выброс, а энергетическая эффективность такого решения оказывается чрезвычайно велика. Так, выделение энергии от сжигания тонны нефти идентично тому ее объему, которое выделяется при утилизации двух тонн пластика. А уж этого «добра» хватит на десятки лет вперед!

Чаще всего строительство ТЭЦ предполагает использование ископаемого топлива, о чем мы уже говорили выше. Впрочем, в последние годы планируется создание которые будут монтироваться в условиях труднодоступных регионов Крайнего Севера. Так как подвоз топлива туда исключительно затруднен, атомная энергетика является единственным надежным и постоянным источником энергии.

Какими они бывают?

Бывают ТЭЦ (фото которых есть в статье) промышленные и «бытовые», отопительные. Как несложно догадаться из названия, промышленные электростанции обеспечивают электричеством и теплом крупные производственные предприятия.

Зачастую строятся еще на этапе возведения завода, составляя вместе с ним единую инфраструктуру. Соответственно, «бытовые» разновидности возводятся неподалеку от спальных микрорайонов города. В промышленных передается в виде горячего пара (не больше 4-5 км), в случае отопительных - при помощи горячей воды (20-30 км).

Сведения об оборудовании станций

Основным оборудованием этих предприятий являются турбинные агрегаты, которые переводят механическую энергию в электричество, и котлы, ответственные за выработку пара, который вращает маховики генераторов. В состав турбинного агрегата входит как сама турбина, так и синхронный генератор. Трубины с противодавлением 0,7—1,5 Мн/м2 ставят на те ТЭЦ, которые снабжают теплом и энергией промышленные объекты. Модели же с давлением 0,05—0,25 Мн/м2 служат для обеспечения бытовых потребителей.

Вопросы КПД

В принципе, все выработанное тепло можно использовать полностью. Вот только количество электроэнергии, которое вырабатывается на ТЭЦ (расшифровка этого термина вам уже известна), напрямую зависит от тепловой нагрузки. Проще говоря, в весенне-летний период ее выработка снижается едва ли не до нуля. Таким образом, установки с противодавлением используются только для снабжения промышленных мощностей, у которых величина потребления более-менее равномерна на протяжении всего периода.

Установки конденсирующего типа

В этом случае для снабжения потребителей теплом используется лишь так называемый «пар отбора», а все остальное тепло зачастую попросту теряется, рассеиваясь в окружающей среде. Чтобы снизить потери энергии, такие ТЭЦ должны работать с минимальным выпуском тепла в конденсирующую установку.

Впрочем, еще со времен СССР строятся такие станции, в которых конструктивно предусмотрен гибридный режим: они могут работать как обычные конденсационные ТЭЦ, но их турбинный генератор вполне допускает функционирование в режиме противодавления.

Универсальные разновидности

Неудивительно, что именно установки с конденсацией пара получили максимальное распространение в силу своей универсальности. Так, только они дают возможность практически независимо регулировать электрическую и тепловую нагрузку. Даже если тепловой нагрузки вовсе не предвидится (в случае особенно жаркого лета) население будет снабжаться электроэнергией по прежнему графику (Западная ТЭЦ в Петербурге).

«Тепловые» разновидности ТЭЦ

Как вы уже могли понять, выработка тепла на такого рода электростанциях отличается крайней неравномерностью на протяжении года. В идеальном случае около 50% горячей воды или пара идет на обогрев потребителей, а весь остальной теплоноситель используется для выработки электричества. Именно так работает Юго-Западная ТЭЦ в Северной столице.

Отпуск тепла в большинстве случаев выполняется по двум схемам. Если используется открытый вариант, то горячий пар от турбин идет непосредственно к потребителям. В случае если была выбрана закрытая схема работы, теплоноситель подается после прохождения теплообменников. Выбор схемы определяется исходя из многих факторов. В первую очередь учитывается расстояние от обеспечиваемого теплом и электричеством объекта, количество населения и сезон. Так, Юго-Западная ТЭЦ в Петербурге работает по закрытой схеме, так как она обеспечивает большую эффективность.

Характеристики используемого топлива

Может использоваться твердое, жидкое и Так как ТЭЦ зачастую строятся в непосредственной близости от крупных населенных пунктов и городов, зачастую приходится использовать достаточно ценные его виды, газ и мазут. Применение же в качестве такового угля и мусора в нашей стране достаточно ограниченно, так как далеко не на всех станциях установлено современное эффективное воздухоочистительное оборудование.

Чтобы очистить выхлоп установок, используются специальные уловители твердых частиц. Чтобы рассеивать твердые частицы в достаточно высоких слоях атмосферы, строят трубы высотой в 200—250 метров. Как правило, все теплоэлектроцентрали (ТЭЦ) стоят на достаточно большом расстоянии от источников водоснабжения (реки и водохранилища). А потому используется искусственные системы, включающие в свой состав градирни. Прямоточное снабжение водой встречается крайне редко, в весьма специфичных условиях.

Особенности газовых станций

Особняком стоят газовые ТЭЦ. Теплоснабжение потребителей осуществляется не только за счет энергии, которая вырабатывается при сжигании но и при утилизации тепла газов, которые при этом образуются. КПД таких установок чрезвычайно высоко. В некоторых случаях в качестве ТЭЦ могут использоваться и атомные станции. Это особенно распространено в некоторых арабских странах.

Там эти станции играют сразу две роли: обеспечивают снабжение населения электроэнергией и технической водой, так как попутно исполняют функции А сейчас рассмотрим основные ТЭЦ нашей страны и ближнего зарубежья.

Юго-Западная, Санкт-Петербург

В нашей стране известностью пользуется Западная ТЭЦ, которая расположена в Санкт-Петербурге. Зарегистрирована как ОАО «Юго-Западная ТЭЦ». Строительство этого современного объекта преследовало сразу несколько функций:

  • Компенсация сильного дефицита тепловой энергии, который мешал интенсификации программы жилищного строительства.
  • Повышение надежности и энергетической эффективности городской системы в целом, так как именно с этим аспектом имел проблемы Санкт-Петербург. ТЭЦ позволила частично решить эту проблему.

Но эта станция известна еще и тем, что одной из первых в России стала соответствовать строжайшим экологическим требованиям. Для нового предприятия городское правительство выделило площадь более 20 Га. Дело в том, что под строительство была отведена резервная площадь, оставшаяся от Кировского района. В тех краях был старый сборник золы от ТЭЦ-14, а потому район был не пригоден для строительства жилья, но чрезвычайно удачно расположен.

Запуск состоялся в конце 2010 года, причем на церемонии присутствовало практически все руководство города. В строй были введены две новейшие автоматические котельные установки.

Мурманская

Город Мурманск известен как база нашего флота на Балтийском море. Но еще он характеризуется крайней суровостью климатических условий, что накладывает определенные требования на его энергетическую систему. Неудивительно, что Мурманская ТЭЦ во многом является совершенно уникальным техническим объектом даже в масштабах всей страны.

Она была введена в эксплуатацию еще в 1934 году, и с тех пор продолжает исправно снабжать жителей города теплом и электроэнергией. Впрочем, в первые пять лет Мурманская ТЭЦ являлась обычной электростанцией. Первые 1150 метров теплотрассы были проложены только в 1939 году. Дело в запущенной Нижне-Туломской ГЭС, которая практически полностью перекрывала потребности города в электричестве, а потому появилась возможность высвободить часть тепловой выработки для отопления городских домов.

Станция характерна тем, что весь год работает в сбалансированном режиме, так как ее тепловая и «энергетическая» выработки приблизительно равны. Впрочем, в условиях полярной ночи ТЭЦ в некоторые пиковые моменты начинает использовать большую часть топлива именно для выработки электроэнергии.

Новополоцкая станция, Белоруссия

Проектирование и строительство этого объекта началось в августе 1957 года. Новая Новополоцкая ТЭЦ должна была решить вопрос не только теплоснабжения города, но и обеспечения электричеством строившегося в том же районе нефтеперерабатывающего завода. В марте 1958 года проект был окончательно подписан, одобрен и утвержден.

Первую очередь ввели в эксплуатацию в 1966 году. Вторая была запущена в 1977 году. Тогда же Новополоцкая ТЭЦ была в первый раз модернизирована, ее пиковую мощность увеличили до 505 МВт, а чуть позже заложили третью очередь строительства, завершенную в 1982 году. В 1994 г. станция была переведена на сжиженный природный газ.

К настоящему моменту в модернизацию предприятия уже вложено порядка 50 миллионов американских долларов. Благодаря столь внушительным денежным вливаниям предприятие не только было полностью переведено на газ, но и получило огромное количество совершенно нового оборудования, которое позволит станции прослужить еще десятки лет.

Выводы

Как ни странно, но на сегодняшний день именно устаревшие ТЭЦ являются действительно универсальными и перспективными станциями. Используя современные нейтрализаторы и фильтры, нагревать воду можно, сжигая практически весь мусор, который производит населенный пункт. При этом достигается тройная выгода:

  • Разгружаются и расчищаются свалки.
  • Город получает дешевую электроэнергию.
  • Решается проблема с отоплением.

Кроме того, в прибрежных районах вполне реально строительство ТЭЦ, которые одновременно будут являться опреснителями морской воды. Такая жидкость вполне пригодна для полива, для животноводческих комплексов и промышленных предприятий. Словом, настоящая технология будущего!

Теплоэлектроцентраль (ТЭЦ)

Наибольшее распространение ТЭЦ получили в СССР. Первые теплопроводы были проложены от электростанций Ленинграда и Москвы (1924, 1928). С 30-х гг. началось проектирование и строительство ТЭЦ мощностью 100-200 Мвт. К концу 1940 мощность всех действующих ТЭЦ достигла 2 Гвт, годовой отпуск тепла - 10 8 Гдж, а протяжённость тепловых сетей (См. Тепловая сеть) - 650 км. В середине 70-х гг. суммарная электрическая мощность ТЭЦ составляет около 60 Гвт (при общей мощности электростанций Теплоэлектроцентраль 220 и тепловых электростанций Теплоэлектроцентраль 180 Гвт ). Годовая выработка электроэнергии на ТЭЦ достигает 330 млрд. квт․ч, отпуск тепла - 4․10 9 Гдж; мощность отдельных новых ТЭЦ - 1,5-1,6 Гвт при часовом отпуске тепла до (1,6-2,0)․10 4 Гдж; удельная выработка электроэнергии при отпуске 1 Гдж тепла - 150-160 квт․ч. Удельный расход условного топлива на производство 1 квт․ч электроэнергии составляет в среднем 290 г (тогда как на ГРЭС - 370 г ); наименьший среднегодовой удельный расход условного топлива на ТЭЦ около 200 г/квт․ч (на лучших ГРЭС - около 300 г/квт․ч ). Такой пониженный (по сравнению с ГРЭС) удельный расход топлива объясняется комбинированным производством энергии двух видов с использованием тепла отработавшего пара. В СССР ТЭЦ дают экономию до 25 млн. т условного топлива в год (Теплоэлектроцентраль 11% всего топлива, идущего на производство электроэнергии).

ТЭЦ - основное производственное звено в системе централизованного теплоснабжения. Строительство ТЭЦ - одно из основных направлений развития энергетического хозяйства в СССР и др. социалистических странах. В капиталистических странах ТЭЦ имеют ограниченное распространение (в основном промышленные ТЭЦ).

Лит.: Соколов Е. Я., Теплофикация и тепловые сети, М., 1975; Рыжкин В. Я., Тепловые электрические станции, М., 1976.

В. Я. Рыжкин.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Теплоэлектроцентраль" в других словарях:

    - (ТЭЦ), паротурбинная тепловая электростанция, вырабатывающая и отпускающая потребителям одновременно 2 вида энергии: электрическую и тепловую (в виде горячей воды, пара). В России мощность отдельных ТЭЦ достигает 1,5 1,6 ГВт при часовом отпуске… … Современная энциклопедия

    - (ТЭЦ теплофикационная электростанция), тепловая электростанция, вырабатывающая не только электрическую энергию, но и тепло, отпускаемое потребителям в виде пара и горячей воды … Большой Энциклопедический словарь

    ТЕПЛОЭЛЕКТРОЦЕНТРАЛЬ, и, жен. Тепловая электростанция, вырабатывающая электроэнергию и тепло (горячую воду, пар) (ТЭЦ). Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова Большая политехническая энциклопедия

    ТЭЦ 26 (Южная ТЭЦ) в Москве … Википедия

ТЭЦ — тепловая электростанция, которая производит не только электроэнергию, но и дает тепло в наши дома зимой. На примере Красноярской ТЭЦ посмотрим как работает почти любая теплоэлектростанция.

В Красноярске есть 3 теплоэлектроцентрали, суммарная электрическая мощность которых всего 1146 МВт (для сравнения, одна только наша Новосибирская ТЭЦ 5 имеет мощность 1200 МВт), но примечательна была для меня именно Красноярская ТЭЦ-3 тем, что станция новая - ещё не прошло и года, как первый и пока единственный энергоблок был аттестован Системным оператором и введён в промышленную эксплуатацию. Поэтому мне удалось поснимать ещё не запылившуюся, красивую станцию и узнать много нового для себя о ТЭЦ.

В этом посте, помимо технической информации о КрасТЭЦ-3, я хочу раскрыть сам принцип работы почти любой теплоэлектроцентрали.

1. Три дымовые трубы, высота самой высокой из них 275 м, вторая по высоте - 180м



Сама аббревиатура ТЭЦ подразумевает собой, что станция вырабатывает не только электричество, но и тепло (горячая вода, отопление), причем, выработка тепла возможно даже более приоритетна в нашей известной суровыми зимами стране.

2. Установленная электрическая мощность Красноярской ТЭЦ-3 208 МВт, а установленная тепловая мощность 631,5 Гкал/ч

Упрощенно принцип работы ТЭЦ можно описать следующим образом:

Всё начинается с топлива. В роли топлива на разных электростанциях могут выступать уголь, газ, торф, горючие сланцы. В нашем случае это бурый уголь марки Б2 с Бородинского разреза, расположенного в 162 км от станции. Уголь привозят по железной дороге. Часть его складируется, другая часть идёт по конвеерам в энергоблок, где сам уголь сначала измельчается до пыли и потом подаётся в камеру сгорания - паровой котёл.

Паровой котёл - это агрегат для получения пара с давлением выше атмосферного из непрерывно поступающей в него питательной воды. Происходит это засчет теплоты, выделяющейся при сгорании топлива. Сам котёл выглядит довольно внушительно. На КрасТЭЦ-3 высота котла 78 метров (26-этажный дом), а весит он более 7000 тонн.

6. Паровой котёл марки Еп-670, произведенный в Таганроге. Производительность котла 670 тонн пара в час

Я позаимствовал с сайта energoworld.ru упрощённую схему парового котла электростанции, чтобы вам было понятно его устройтсво

1 — топочная камера (топка); 2 — горизонтальный газоход; 3 — конвективная шахта; 4 — топочные экраны; 5 — потолочные экраны; 6 — спускные трубы; 7 — барабан; 8 — радиационно-конвективный пароперегреватель; 9 — конвективный пароперегреватель; 10 — водяной экономайзер; 11 — воздухоподогреватель; 12 — дутьевой вентилятор; 13 — нижние коллекторы экранов; 14 — шлаковый комод; 15 — холодная коронка; 16 — горелки. На схеме не показаны золоуловитель и дымосос.

7. Вид сверху

10. Отчётливо виден барабан котла. Барабан представляет собой цилиндрический горизонтальный сосуд, имеющий водяной и паровой объемы, которые разделяются поверхностью, называемой зеркалом испарения.

Благодаря большой паропроизводительности котёл имеет развитые поверхности нагрева, как испарительные, так и пароперегревательные. Топка у него призматическая, четырёхугольная с естественной циркуляцией.

Пара слов о принципе работы котла:

В барабан, проходя экономайзер, попадает питательная вода, по спускным трубам спускается в нижние коллекторы экранов из труб, по этим трубам вода поднимается вверх и, соответственно, нагревается, так как внутри топки горит факел. Вода превращается в паро-водяную смесь, часть её попадает в выносные циклоны и другая часть обратно барабан. И там, и там происходит разделение этой смеси на воду и пар. Пар уходит в пароперегреватели, а вода повторяет свой путь.

11. Остывшие дымовые газы (примерно 130 градусов), выходят из топки в электрофильтры. В электрофильтрах происходит очистка газов от золы, зола удаляется на золоотвал, а очищенные дымовые газы уходят в атмосферу. Эффективная степень очистки дымовых газов составляет 99,7%.
На фотографии те самые электрофильтры.

Проходя через пароперегреватели пар нагревается до температуры 545 градусов и поступает в турбину, где под его давлением вращается ротор турбогенератора и, соответственно, вырабатывается электроэнергия. Следует отметить, что в конденсационных электростанциях (ГРЭС) система обращения воды полностью замкнута. Весь пар, проходя сквозь турбину, охлаждается и конденсируется. Снова превратившись в жидкое состояние, вода используется заново. А в турбинах ТЭЦ не весь пар попадает в конденсатор. Осуществляются отборы пара - производственные (использование горячего пара на каких-либо производствах) и теплофикационные (сеть горячего водоснабжения). Это делает ТЭЦ экономически более выгодной, но у неё есть свои минусы. Недостатком теплоэлектроцентралей является то, что они должны быть построены недалеко от конечного потребителя. Прокладка теплотрасс стоит огромных денег.

12. На Красноярской ТЭЦ-3 используется прямоточная система технического водоснабжения, это позволяет отказаться от использование градирен. То есть воду для охлаждения конденсатора и использования в котле берут прямо из Енисея, но перед этим она проходит очистку и обессоливание. После использования вода возвращается по каналу обратно в Енисей, проходя систему рассеивающего выпуска (перемешивание нагретой воды с холодной, дабы снизить тепловое загрязнение реки)

14. Турбогенератор

Я надеюсь, мне удалось внятно описать принцип работы ТЭЦ. Теперь немного о самой КрасТЭЦ-3.

Строительство станции началось ещё в далёком 1981 году, но, как у нас в России бывает, из-за развалов СССР и кризисов построить ТЭЦ вовремя не получилось. С 1992 г до 2012 г станция работала как котельная - нагревала воду, но электричество вырабатывать научилась только 1-го марта прошлого года.

Красноярская ТЭЦ-3 принадлежит Енисейской ТГК-13. На ТЭЦ работает около 560 человек. В настоящее время Красноярская ТЭЦ-3 обеспечивает теплоснабжение промышленных предприятий и жилищно-коммунального сектора Советского района г. Красноярска - в частности, микрорайоны «Северный», «Взлётка», «Покровский» и «Иннокентьевский».

17.

19. ЦПУ

20. Ещё на КрасТЭЦ-3 функционируют 4 водогрейных котла

21. Глазок в топке

23. А это фото снято с крыши энергоблока. Большая труба имеет высоту 180м, та что поменьше - труба пусковой котельной.

24. Трансформаторы

25. В качестве распределительного устройства на КрасТЭЦ-3 используется закрытое распределительное устройство с элегазовой изоляцией (ЗРУЭ) на 220 кВ.

26. Внутри здания

28. Общий вид распределительного устройства

29. На этом всё. Спасибо за внимание