Органы зрения насекомых. Аппозиционное и суперпозиционное зрение

Насекомые. Мы с детства любовались красотой бабочки, ловили «божьих коровок», страдали от укусов комаров. И даже став взрослыми, боимся ос и пауков. Этот класс животных на латыни он звучит очень красиво «insecta» - самый многочисленный. Если рассматривать только описанные виды, то их около миллиона. На самом деле их намного больше. Сейчас ученые склоняются к мнению, что всего на нашей планете насчитывается около восьми миллионов видов насекомых. Мириады крошечных созданий ползают, летают, жужжат, стрекочут и смотрят на мир своими глазами.

Как же видят эти миниатюрные создания? Глаза насекомых, очень важный орган. У взрослых особей многих видов глаза занимают большую часть головы. Если их рассматривать с большим увеличением, то они покажутся похожими на мелкую решетку или сеточку. Это потому, что каждый глаз состоит из множества маленьких глазков. Их называют – фасеточными. Такой крошечный глазок-фасетка, называется омматидий. Длинные узкие конусы, на окончании которых расположены линзы в виде шестигранника, плотно прилегают друг к другу. Оси их, благодаря тому, что глаз круглый, расходятся лучеобразно. И не смотря на то, что у одного омматидия возможность обзора всего от одного до шести градусов, все вместе, а их у разных видов от 100 до 30 000, дают возможность глазу, охватывает предмет в целом. Изображение получается составленным из разных кусочков, как мозаика.

Мелких деталей насекомые не различают. Четкость изображения нарушается из за того, что оптические оси омматидий расходятся под углами 1 – 6 градусов. Видят насекомые не далеко. Всего на расстояние нескольких метров. Зато, когда солнца на небосклоне уже не видно, благодаря способности определять плоскость поляризации света, они хорошо ориентируются. Да и мелькания или мигания света они различают с частотой 250 - 300 герц. Для сравнения мы, люди, способны это делать с частотой около 50 герц.

Если говорить о том, различают ли эти крохи цвета, то это да. Конечно же, тоже не так как люди. Больше всего в этом плане были исследованы пчелы. Так из многочисленных опытов ученые узнали, что пчелы видят мир, окрашенный в четыре цвета. Красно–желто-зеленый. Да, да. Именно так. Не каждый отдельно, а неведомый нам цвет, слитый воедино. Еще сине-зеленый, сине-фиолетовый и ультрафиолетовый. Ультрафиолет различают и другие насекомые. Среди них некоторые бабочки, муравьи. Досконально этот вопрос не изучен. Многое только предстоит узнать.

Это еще не все. На лобно-теменной части головы насекомых в виде треугольника расположены еще три глазка. У некоторых два. Диаметр их от 0,03 до 0,5 миллиметра. Они намного проще фасеточных. Но играют не менее важную роль. Эти глазки увеличивают общую светочувствительность, то есть помогают насекомому ориентироваться по отношению к источнику света. Если глазки заклеить, то насекомое будет менее чувствительно к свету.

Изучая строение, привычки и повадки этих удивительных маленьких существ, все больше убеждаемся в том, как неповторим и уникален окружающий нас мир. И как бережно к нему надо относиться, чтобы не нарушить тот баланс, которым окружил нас Создатель.


Тремя путями воспринимают свет насекомые: всей поверхностью тела, простыми глазками и сложными, так называемыми фасеточными глазами.

Как показали опыты, всей поверхностью тела чувствуют свет гусеницы, личинки водяных жуков, тли, жуки (даже слепые пещерные), мучные черви, тараканы и, конечно, многие другие насекомые. Свет через кутикулу проникает к голове и вызывает соответствующие реакции в воспринимающих его клетках мозга.

Наиболее примитивные простые глазки, пожалуй, у личинок некоторых комаров. Это пигментные пятна с небольшим числом светочувствительных клеток (их нередко всего две или три). У личинок пилильщиков (отряд перепончатокрылых) и жуков глазки более сложные: пятьдесят и больше светочувствительных клеток, прикрытых сверху прозрачной линзой - утолщением кутикулы.

Красные глаза гусеницы. Фото: Jes

С каждой стороны головы личинки жука-скакуна шесть глазков, два из которых много больше других (в них 6 тысяч зрительных клеток). Хорошо ли они видят? Едва ли они способны передать в мозг впечатление о форме предмета. Однако приблизительные размеры увиденного два больших глазка засекают неплохо.

Личинка сидит в вертикальной норке, вырытой в песке. С расстояния в 3-6 сантиметров она замечает жертву или врага. Если проползающее близко насекомое не больше 3-4 миллиметров, личинка хватает его челюстями. Когда больше, прячется в норку.
Пять-шестъ простых глазков на каждой стороне головы гусениц содержат каждый всего по одной «ритинальной палочке» - зрительному элементу - и прикрыты сверху линзой, способной концентрировать свет.

Каждый глаз в отдельности не дает представления о форме наблюдаемого предмета. Однако в опытах гусеница проявляла поразительные способности. Вертикальные предметы она видит лучше, чем горизонтальные. Из двух столбов или деревьев выбирает более высокое и ползет к нему, даже если заклеить черной краской все ее простейшие глазки, оставив лишь один. В каждый данный момент он видит лишь точку света, но гусеница вертит головой, рассматривая единственным своим глазом поочередно разные пункты предмета, и этого достаточно, чтобы в ее мозгу сложилась приблизительная картина увиденного. Конечно, неясная, нечеткая, но все-таки показанный ей объект гусеница замечает.

Простые глазки типичны для личинок насекомых, есть они, впрочем, и у многих взрослых. У последних главное - так называемые сложные, или фасеточные, глаза: по бокам головы. Сложены они из множества удлиненных простых глазков - омматидиев. В каждом омматидии - соединенная нервом с мозгом воспринимающая свет клетка. Поверх нее - удлиненный хрусталик. Оба, светочувствительная клетка и хрусталик, окружены непроницаемым для света чехлом из пигментных клеток. Лишь сверху оставлено отверстие, но там хрусталик прикрыт прозрачной кутикулярной роговицей. Она общая для всех омматидиев, плотно прилегающих друг к другу и соединенных в один фасеточный глаз. В нем может быть всего 300 омматидиев (самка светлячка), 4000 (комнатная муха), 9000 (жук-плавунец), 17 000 (бабочки) и 10 000-28 000 у разных стрекоз.


Фасеточные глаза у бабочки Монарх. Фото: Monica R.

Каждый омматидий передает в мозг только одну точку из всей сложной окружающей насекомое картины мира. Из множества отдельных точек, увиденных каждым из омматидиев, складывается в мозгу насекомого мозаичное «панно» предметов ландшафта.
У ночных насекомых (светлячков, других жуков, у мотыльков) эта мозаичная картина оптического видения, так сказать, более смазанная. Ночью пигментные клетки, отделяющие омматидии сложного глаза друг от друга, сокращаясь, стягиваются кверху, к роговице. Лучи света, попадающие в каждую фасетку, воспринимаются не только ее светочувствительной клеткой, но и клетками, расположенными в соседних омматидиях. Ведь теперь они не закрыты темными пигментными «шторками». Этим достигается более полное улавливание света, которого не так уж много в ночном мраке.

Днем же пигментные клетки заполняют все промежутки между омматидиями, и каждый из них воспринимает только те лучи, которые концентрирует его собственный хрусталик. Иными словами, «суперпозиционный», так его называют, глаз ночных насекомых, днем функционирует как «аппозиционный» глаз насекомых дневных.

Не менее важна, чем число фасеток, другая их особенность - угол зрения каждого омматидия. Чем он меньше, тем выше разрешающая способность глаза и тем более мелкие детали наблюдаемого объекта он может увидеть. У омматидия уховертки угол зрения - 8 градусов, у пчелы - 1 градус. Подсчитано, что на каждую точку в мозаичной картине увиденного уховерткой у пчелы приходится 64 точки. Следовательно, мелкие детали наблюдаемого предмета глаз пчелы улавливает в десятки раз лучше.
Но в глаз с меньшим углом зрения проникает и меньше света. Поэтому величина фасеток в сложных глазах насекомых неодинакова. В тех направлениях, где нужна более яркая видимость и не так уж необходимо точное рассматривание деталей, располагаются более крупные фасетки. У слепня, например, в верхней половине глаза фасетки заметно крупнее, чем в нижней.
Подобные же четко разделенные арены с разновеликими омматидиями есть и у некоторых мух. У пчелы иное устройство фасеток: их угол зрения в направлении горизонтальной оси тела в два-три раза больше, чем по вертикали.

У жуков-вертячек и самцов-поденок по существу два глаза с каждой стороны: один с крупными, другой с мелкими фасетками.
Помните, как гусеница, рассматривая предмет всего одним глазом (другие были замазаны краской), могла, однако, составить известное, правда очень грубое, представление о его форме. Она, вертя головой, весь объект разглядывала по частям, а запоминающий аппарат мозга складывал в единое впечатление все увиденные в каждый данный момент точки. Так же поступают и насекомые с фасеточными глазами: рассматривая что-либо, вертят головой. Сходный эффект достигается и без поворота головы, когда наблюдаемый объект движется или когда летит само насекомое. На лету фасеточные глаза видят лучше, чем в покое.
Пчела, например, способна постоянно держать в поле зрения предмет, который мелькает 300 раз в секунду. А наш глаз даже и вшестеро более медленного мелькания не заметит.

Близкие предметы насекомые видят лучше, чем дальние. Они очень близоруки. Четкость увиденного у них намного хуже, чем у нас.
Интересный вопрос: какие цвета различают насекомые? Опыты показали, что пчелы и падальные мухи видят самые коротковолновые лучи спектра (297 миллимикрон), которые только есть в солнечном свете. Ультрафиолет - к нему наш глаз совершенно слеп - различают также муравьи, ночные бабочки и, очевидно, многие другие насекомые.


Глаза насекомого. Фото: USGS Bee Inventory and Monitoring Laboratory

Чувствительность к противоположному концу спектра у насекомых разная. Пчела слепа к красному свету: он для нее все равно, что черный. Самые длинные волны, которые она еще воспринимает, - 650 миллимикрон (где-то на границе между красным и оранжевым). Осы, натренированные прилетать за кормом на черные столики, путают их с красными. Красное не видят и некоторые бабочки, сатиры например. Но другие (крапивница, капустница) красный цвет различают. Рекорд, однако, принадлежит светлячку: он видит темно-красный цвет с длиной волны в 690 миллимикрон. Ни одно из исследованных насекомых на такое не было способно.
Для человеческого глаза самая яркая часть спектра - желтая. Опыты с насекомыми показали, что у одних зеленая часть спектра воспринимается глазом как самая яркая, у пчелы - ультрафиолетовая, у падальной мухи наибольшая яркость отмечалась в красной, сине-зеленой и ультрафиолетовой полосах спектра.

Несомненно, бабочки, шмели, некоторые мухи, пчелы и другие насекомые, посещающие цветы, различают цвета. Но в какой мере и какие именно, мы еще мало знаем. Необходимы дополнительные исследования.
С пчелами в этом отношении были проведены наиболее многочисленные опыты. Пчела видит окружающий мир, окрашенный в четыре основных цвета: красно-желто-зеленый (не каждый из названных в отдельности, а вместе, слитно, как единый неведомый нам цвет), затем - сине-зеленый, сине- фиолетовый и ультрафиолетовый. Тогда как объяснить, что пчелы прилетают и на красные цветы, на маки, например? Они, а также многие белые и желтые цветы отражают много ультрафиолетовых лучей, поэтому пчела их видит. В какой цвет окрашены они для ее глаз, нам неизвестно.

У бабочек, очевидно, цветовое зрение более близкое к нашему, чем у пчелы. Мы уже знаем, что некоторые бабочки (крапивница и капустница) различают красный цвет. Ультрафиолет они видят, но он не играет для них такой большой роли, как в зрительных восприятиях пчелы. Наиболее привлекают этих бабочек два цвета - сине-фиолетовый и желто-красный.
Разными методами было доказано, что и многие другие насекомые различают цвета, и лучшим образом цвета растений, на которых кормятся либо размножаются. Некоторые бражники, жуки- листоеды, тли, шведские мушки, клопы сухопутные и водяной клоп гладыш - вот далеко не полный перечень таких насекомых. Интересно, что у гладыша только верхняя и задняя часть глаза обладает цветовым зрением, нижняя и передняя - нет. Почему так, непонятно.

Помимо восприятия ультрафиолетовых лучей другое свойство глаза насекомых, которого лишены наши глаза, - это чувствительность к поляризованному свету и способность ориентироваться по нему. Не только фасеточные глаза, но и простые глазки, как показали опыты с гусеницами и личинками перепончатокрылых, способны воспринимать поляризованный свет. Рассмотрели под электронным микроскопом глаз некоторых, и нашли в ретинальной светочувствительной палочке молекулярные структуры, действующие, очевидно, как поляроид.

Некоторые наблюдения последних лет убеждают: ночные насекомые обладают органами, улавливающими инфракрасные лучи.



И у мух, и у пчел по пять глаз. Три простых глаза расположены в верхней части головы (можно сказать, на темени), а два сложных, или фасеточных - по бокам головы. Сложные глаза мух, пчел (а также бабочек, стрекоз и некоторых других насекомых) - предмет восторженного изучения ученых. Дело в том, что эти органы зрения устроены очень интересно. Они состоят из тысяч отдельных шестиугольников, или, говоря научным языком, фасеток. Каждая из фасеток — это миниатюрный глазок, который дает изображение отдельной части предмета. В сложных глазах комнатной мухи примерно 4000 фасеток, у рабочей пчелы - 5000, у трутня - 8000, у бабочки - до 17 000, у стрекозы - до 30 000. Получается, что глаза насекомых посылают в их мозг несколько тысяч изображений отдельных частей предмета, которые хотя и сливаются в изображение предмета в целом, но все же этот предмет выглядит как бы сложенным из мозаики.

Зачем нужны фасеточные глаза? Считается, что с их помощью насекомые ориентируются в полете. В то время как простые глаза предназначены для рассматривания предметов, находящихся вблизи. Так, если пчеле удалить или заклеить сложные глаза, то она ведет себя как слепая. Если же заклеиваются простые глаза, то кажется, что у насекомого замедленная реакция.

1,2 - Фасеточные (сложные) глаза пчелы или мухи
3
- три простых глаза пчелы или мухи

Пять глаз позволяют насекомым охватывать 360 градусов , то есть видеть все, что происходит спереди, с обоих боков и сзади. Может быть, поэтому к мухе так сложно подобраться незамеченным. А если учесть, что сложные глаза гораздо лучше видят движущийся предмет, чем неподвижный, то остается только удивляться, как у человека иногда все же получается прихлопнуть муху газетой!

Особенность насекомых с фасеточными глазами улавливать даже малейшее движение отображена в следующем примере: если пчелы и мухи усядутся вместе с людьми смотреть кинофильм, то им будет казаться, что двуногие зрители подолгу рассматривают один кадр, прежде чем перейти к рассматриванию следующего. Чтобы насекомые могли смотреть кино (а не отдельные кадры, наподобие фото), то пленку проектора нужно крутить в 10 раз быстрее.

Стоит ли завидовать глазам насекомых? Наверное, нет. К примеру, глаза мухи видят многое, но не способны к пристальному разглядыванию. Вот почему они обнаруживают пищу (каплю варенья, например), ползая по столу и буквально на нее натыкаясь. А пчелы из-за особенностей своего зрения не различают красный цвет - для них он черный, серый или синий.

Наиболее сложными из органов чувств у насекомых являются органы зрения. Последние представлены образованиями нескольких типов, из которых важнейшие - сложные фасетированные глаза примерно такого же строения, как и сложные глаза ракообразных .

Глаза состоят из отдельных омматидиев ( рис. 337), количество которых определяется главным образом биологическими особенностями насекомых. Активные хищники и хорошие летуны, стрекозы обладают глазами, насчитывающими до 28 000 фасеток в каждом. В то же время муравьи (отр. Перепончатокрылые), особенно рабочие особи видов, обитающих под землей, имеют глаза, состоящие из 8 - 9 омматидиев.

Каждый омматидий представляет совершенную фотооптическую сенсиллу ( рис. 338). В его состав входят оптический аппарат, включающий роговицу, - прозрачный участок кутикулы над омматидием и так называемый хрустальный конус. В совокупности они выполняют роль линзы. Воспринимающий аппарат омматидия представлен несколькими (4 - 12) рецепторными клетками; специализация их зашла очень далеко, о чем говорит полная утрата ими жгутиковых структур. Собственно чувствительные части клеток - рабдомеры - представляют скопления плотно упакованных микроворсинок, располагаются в центре омматидия и тесно прилегают друг к другу. В совокупности они образуют светочувствительный элемент глаза - рабдом.

По краям омматидия залегают экранирующие пигментные клетки; последние довольно существенно отличаются у дневных и ночных насекомых. В первом случае пигмент в клетке неподвижен и постоянно разделяет соседние омматидии, не пропуская световые лучи из одного глазка в другой. Во втором случае пигмент способен перемещаться в клетках и скапливаться только в их верхней части. При этом лучи света попадают на чувствительные клетки не одного, а нескольких соседних омматидиев, что заметно (почти на два порядка) повышает общую чувствительность глаза. Естественно, что подобного рода адаптация возникла у сумеречных и ночных насекомых. От чувствительных клеток омматидия отходят нервные окончания образующие зрительный нерв.

Кроме сложных глаз многие насекомые имеют еще и простые глазки ( рис. 339), строение которых не соответствует строению одного омматидия. Светопреломляющий аппарат линзообразной формы, сразу же под ним расположен слой чувствительных клеток. Весь глазок одет чехлом из пигментных клеток. Оптические свойства простых глазков таковы, что воспринимать изображения предметов они не могут.

Личинки насекомых в большинстве случаев обладают только простыми глазками, отличающимися, однако, по строению от простых глазков взрослых стадий. Никакой преемственности между глазками взрослых особей и личинок не существует. Во время метаморфоза глаза личинок полностью резорбируются.

Зрительные способности насекомых совершенны. Однако структурные особенности сложного глаза предопределяют особый физиологический механизм зрения. Животные, имеющие сложные глаза, обладают "мозаичным" зрением. Малые размеры омматидиев и их обособленность друг от друга приводят к тому, что каждая группа чувствительных клеток воспринимает лишь небольшой и сравнительно узкий пучок лучей. Лучи, падающие под значительным углом, поглощаются экранирующими пигментными клетками и не достигают светочувствительных элементов омматидиев. Таким образом, схематично каждый омматидии получает изображение только одной небольшой точки объекта, находящегося в поле зрения всего глаза. Вследствие этого изображение складывается из стольких световых точек, отвечающих различным частям объекта, на сколько фасеток падают перпендикулярно лучи от объекта. Общая картина комбинируется как бы из множества мелких частичных изображений путем приложения их одного к другому.

Восприятие цвета насекомыми также отличается известным своеобразием. Представители высших групп Insecta имеют цветовое зрение, основанное на восприятии трех основных цветов, смешение которых и дает все красочное многообразие окружающего нас мира. Однако у насекомых по сравнению с человеком наблюдается сильный сдвиг в коротковолновую часть спектра: они воспринимают зелено - желтые, синие и ультрафиолетовые лучи. Последние для нас невидимы. Следовательно, цветовое восприятие мира насекомыми резко отличается от нашего.

Функции простых глазков взрослых насекомых требуют еще серьезного изучения. По - видимому, они в какой - то мере "дополняют" сложные глаза, влияя на активность поведения насекомых в разных условиях освещенности. Кроме того, было показано, что простые глазки наряду со сложными глазами способны воспринимать поляризованный свет.

Показать все


Разновидности строения органов зрения

У насекомых глаза могут быть представлены в трех разновидностях:

  • (фасеточные);
  • (дорсальные, оцелли);
  • личиночные (латеральные, личиночные). (фото)

Они имеют различное строение и неодинаковую способность видеть.

Сложные глазавстречаются у большинства насекомых, причем, чем более высокоразвитыми являются последние, тем лучше у них обычно развиты органы зрения. еще называют фасеточными, потому что их наружная поверхность представлена совокупностью расположенных рядом друг с другом линз - фасеток.

Омматидий

Омматидий

А(слева) - аппозиционный омматидий,

B (справа) - суперпозиционный омматидий

1 - аксоны зрительных клеток, 2 - ретинулярные клетки,

3 - роговица, 4 - кристаллический конус,

5 - пигментные клетки, 6 - световод, 7 - рабдом

Сложный глаз состоит из различного, как правило, большого количества отдельных структурных единиц - омматидиев. включают в себя ряд структур, обеспечивающих проведение, преломление света (фасетка, корнеагенные клетки, хрустальный конус) и восприятие зрительных сигналов (ретинальные клетки, рабдом, нервные клетки). Кроме того, у каждого имеется аппарат пигментной изоляции, благодаря чему, он оказывается полностью или частично защищен от попадания боковых лучей.

Схема строения простого глазка

Из всех разновидностей глаз насекомых обладают наиболее слабой способностью к зрению. По некоторым данным, они вообще не выполняют зрительной функции, и лишь отвечают за улучшение функции сложных глаз. Это, в частности, доказывается тем, что у насекомых практически не бывает простых в отсутствии сложных. Кроме того, при закрашивании фасеточных глаз насекомые перестают ориентироваться в пространстве, даже если у них имеются хорошо выраженные .

Особенности зрения насекомых

Изучению зрения насекомых посвящено огромное количество научных трудов. Ввиду такого интереса со стороны специалистов, многие особенности работы глаз у Insectaна сегодняшний день достоверно выяснены. Тем не менее, строение органов зрения у этих организмов отличается настолько большим разнообразием, что качество видения, восприятие цвета и объема, различение движущихся и неподвижных предметов, распознавание знакомых визуальных образов и другие свойства зрения колоссальным образом различаются у разных групп насекомых. На это способны повлиять следующие факторы: в сложном глазу - структура омматидиев и их количество, выпуклость, расположение и форма глаз; в простых глазках и - их число и тонкие черты строения, которые могут быть представлены значительным многообразием вариантов. Лучше всего на сегодня изучено зрение пчел.

Определенную роль в восприятии формы играет движение объекта. Насекомые охотнее садятся на цветы, которые колышутся на ветру, чем на неподвижные. стрекоз бросаются за движущейся добычей, а самцы бабочек реагируют на летящих самок и плохо видят сидящих. Вероятно, дело в определенной частоте раздражения омматидиев глаз при движении, мелькании и мерцании.

Узнавание знакомых объектов

Насекомые узнают знакомые объекты не только по цвету и форме, но и по расположению предметов, находящихся вокруг них, так что представление об исключительной примитивности их зрения нельзя назвать верным. Например, Песчаная оса находит вход в норку, ориентируясь по тем предметам, что располагаются вокруг нее (трава, камни). Если же их убрать или изменить их расположение, это может сбить насекомое с толку.

Восприятие расстояния

Эта особенность лучше всего исследована на примере стрекоз, жужелиц и других хищных насекомых.

Возможность определять расстояние обусловлена наличием у высших насекомых бинокулярного зрения, то есть, двух глаз, поля зрения которых частично пересекаются. Особенности строения глаз определяют, насколько велико расстояние, доступное обзору того или иного насекомого. Например, жуки-скакуны реагируют на добычу и набрасываются на нее, когда находятся от объекта на расстоянии 15 см.

Светокомпасное движение

Многие насекомые двигаются так, что у них постоянно сохраняется один и тот же угол падения света на сетчатку. Таким образом, солнечные лучи являются своеобразным компасом, по которому ориентируется насекомое. По тому же принципу ночные бабочки перемещаются в направлении искусственных источников света.