Шум и вибрация на производстве. Шум и вибрация на производстве, их нормирование и контроль. Средства защиты от шума и вибрации. Действие шума на организм человека

Задачей защиты человека от окружающих вредных производственных факторов (ОВПФ) является снижение уровня вредных факторов до уровней, не превышающих ПДУ (ПДК), и ри­ска появления опасных факторов до величин приемлемого риска.

Основным и наиболее перспективным методом зашиты являет­ся совершенствование конструкций машин и технологических про­цессов, их замена на более современные и прогрессивные, обладаю­щие минимальным уровнем опасности, выделения вредных ве­ществ, излучений.

Если же исключить наличие ОВПФ при работе нельзя, исполь­зуют следующие приемы защиты:

Удаление человека на максимально возможное расстояние от источника ОВПФ;

Уменьшение времени пребывания в зоне ОВПФ;

Применение средств индивидуальной защиты.

Защита от вибрации

Амплитуда скорости вибрации (виброскорости) v m может быть определена по формуле

где F m – амплитуда возмущения виброскорости, Н; μ – коэффициент сопротивления, Н∙с/м; f – частота вибрации, Гц; m – масса системы, кг; с - коэффициент жесткости системы, Н/м.

На основании анализа формулы можно сделать следующие выводы: для уменьшения виброскорости v m необходимо снижать силу F m (снижать виброактивность машины) и увеличивать знаменатель, а именно – повышать сопротивление системы μ и не допускать, чтобы 2f = с/2f . При равенстве эти членов наступает явление резонанса, и уровень вибрации резко возрастает.

Таким образом, для защиты от вибрации необходимо применять следующие методы:

Снижение виброактивности машин (уменьшение силы F m ) достигается изменением технологического процесса, применением машин с такими кинематическими схемами, при которых динамические процессы, вызываемые ударами, резкими ускорениями и т. п. были бы исключены или предельно снижены (например, замена клепки сваркой); хорошей динамической и статической балансировкой механизмов, смазкой и чистотой обработки взаимодействующих поверхностей; применение кинематических зацеплений пониженной виброактивности (например, использование шевронных и косозубых зубчатых колес вместо прямозубых), заменой подшипников качения на подшипники скольжения; применением конструкционных материалов с повышенным внутренним трением.

Отстройка от резонансных частот (2f ≠с/2f ) заключается в изменении режимов работы машины и соответственно частоты возмущающей вибросилы; собственной частоты колебаний машины путем изменения жесткости системы с (например, установка ребер жесткости) или изменения массы m системы (например, закрепление на машине дополнительных масс).

Вибродемпфирование (увеличение μ) – это метод снижения вибрации путем усиления в конструкции процессов внутреннего трения, рассеивающих колебательную энергию в результате необратимого преобразования ее в теплоту при деформациях, возникающих в материалах, из которых изготовлена конструкция. Вибродемпфирование осуществляется нанесением на вибрирующие поверхности слоя упруговязких материалов, обладающих большими потерями на внутреннее трение.

Виброгашение (увеличение m ) осуществляют путем установки агрегатов на массивный фундамент. Как видно из формулы виброгашение наиболее эффективно при средних и высоких частотах вибрации. Этот способ нашел широкое применение при установке тяжелого оборудования (молотов, прессов, вентиляторов, насосов и т. п.).

Повышение жесткости системы (увеличение с ), например, путем установки ребер жесткости. Как видно из формулы этот способ эффективен только при низких частотах и в ряде случаев средних.

Виброизоляция заключается в уменьшении передачи колебаний от источника возбуждения защищаемому объекту при помощи устройств, помещаемых между ними. Для виброизоляции чаше все­го применяют виброизолирующие опоры типа упругих прокладок, пружин или их сочетания.

Рисунок 3.1 Виброизолирующие опоры: а) пружинные; б) резиновые

Защита от шума

Для защиты человека от акустических колебаний (шума и ультразвука) применяются следующие методы:

  • снижение звуковой мощности источника звука;
  • размещение рабочих мест с учетом направленности излучения звуковой энергии;
  • удаление рабочих мест от источника звука;
  • акустическая обработка помещений;
  • звукоизоляция;
  • применение глушителей;
  • применение средств индивидуальной зашиты.

Снижение звуковой мощности источника звука . Для снижения шума механизмов и машин применяют методы, ана­логичные методам, снижающим вибрацию машин, т. к. вибрация является источником механического шума. Аэродинамический шум, вызываемый движением потоков воз­духа и газа и обтеканием им элементов механизмов и машин, -наиболее мощный источник шума, снижение которого в источнике наиболее сложно. Для уменьшения интенсивности генерации шума улучшают аэродинамическую форму элементов машин, обтекаемых газовым потоком, и снижают скорость движения газа

Изменение направленности излучения шума . При размещении установок с направленным излучением необхо­дима соответствующая ориентация этих установок по отношению к рабочим и населенным местам, поскольку величина направлен­ности может достигать 10. ..15 дБ. Например, отверстие воздухозаборной шахты вентиляционной установки или устье трубы сброса сжатого газа необходимо располагать так, чтобы максимум излуча­емого шума был направлен в противоположную сторону от рабо­чего места.

Удаление рабочих мест от источника звука . Увеличение расстояния от источника звука в 2 раза приводит к уменьшению уровня звука на 6 дБ.

Акустическая обработка помещения - это мероприятие, снижа­ющее интенсивность отраженного от поверхностей помещения (стен, потолка, пола) звука. Для этого применяют звукопоглощаю­щие облицовки поверхностей помещения и штучные (объемные) поглотители различных конструкций, под­вешиваемые к потолку помещения. Поглощение звука происходит путем перехода энергии колеблющихся частиц воздуха в теплоту за счет потерь на трение в пористом материале облицовки или погло­тителя. Для большей эффективности звукопоглощения пористый материал должен иметь открытые со стороны падения звука незам­кнутые поры. Звукопоглощающие материалы характеризуются ко­эффициентом звукопоглощения, равным отношению звуковой энергии, поглощенной материалом, и энергии, падающей на него. Звукопоглощающие материалы должны иметь коэффициент звуко­поглощения не менее 0,3. Чем это значение выше, тем лучше зву­копоглощающий материал. Звукопоглощающие свойства пористых материалов определяются толщиной слоя, частотой звука, наличи­ем воздушной прослойки между материалом и поверхностью поме­щения.

Борьба с шумом сводится в основном к законо­дательным, научно-техническим и профилактичес­ким мерам. Шум - признак не прогресса техники, а ее несовершенства. Проектирование и создание бесшумных или малошумных машин, станков, ав­томатов, другого промышленного оборудования, транспортных средств - наиболее важный этап борьбы с шумом. На последующих этапах - при­менение специальных звукопоглощающих матери­алов, замена шумных процессов менее шумными: ковка и штамповка, например, прессованием, рих­товка листов - вальцовкой, клепка - сваркой.

Если невозможно добиться нужных результа­тов в борьбе с шумом конструктивными или тех­нологическими мерами, необходимо использовать методы звукопоглощения или звукоизоляции.

Звукопоглощение - это покрытие поверхнос­тей помещения звукопоглощающим, как правило, пористым материалом.

Чем он более пористый, тем меньше звуковой энергии отражается от поверх­ности. Лучше поглощаются звуки высоких частот, наиболее вредные. Поэтому в помещении, поверхности которого хорошо поглощают звук, четче слышна человеческая речь, чище музыкальные зву­ки. В этих целях внутренние стены киноконцерт­ных залов, аудиторий, конференц-залов и т.д. об­лицовываются звукопоглощающими материалами. В квартире роль звукопоглощающих материалов могут выполнять ковры, мягкая мебель, тканевые абажуры и т.п.

Звукоизоляция защищает помещение, в кото­ром находятся люди, от источника шума. Звуко­изоляция выполняется в виде разного рода ограж­дений (стенки, боксы, кожухи, кабины, отражаю­щие экраны). Чем большей плотностью обладает материал ограждения, тем он эффективнее защи­щает от проникновения шума. В квартире, чтобы лучше защититься от проникновения шума с лес­тничной клетки, входную дверь нужно делать из более плотного материала, например дуба, без ще­лей.

Звукоизоляцию окон, выходящих на шумную улицу, можно улучшить, увеличив толщину остек­ления, вставив третьи рамы. Можно вмонтировать во внутренние и наружные рамы стекла разной тол­щины. Это заметно снизит проникающий шум и вибрацию стекол, поскольку резонансные часто­ты стекол зависят от их толщины и вибрация од­ного стекла не будет возбуждать резонансные ко­лебания в другом.



В настоящее время промышленность выпус­кает окна специальной конструкции в звукоизо­лирующем исполнении. Они (имеют повышенную толщину остекления, несколько рам, каналы для проветривания, снабженные поглотителями шума, между стеклами создается вакуум, через который не распространяется звуковая волна. Окнами в шумозащитном исполнении оснащаются обыч­но фасады жилых и общественных зданий, выхо­дящие на шумные транспортные магистрали.

В борьбе с транспортными шумами очень важны градостроительные меры:

* специальная планировка жилых микрорай­онов;

* вынос за их пределы крупных магистралей;

* строительство обходных кольцевых дорог;

* ограждение дорог лесными полосами и т.д.

Жилая застройка должна быть максимальноудалена от транспортной магистрали и экраниро­вана несколькими поясами защиты от шума: эсте­тически выполненной насыпью, лесозащитными полосами, зданиями предприятий и учреждений,

в которых допускается уровень шума выше, неже­ли на территории жилой застройки. Экранирова­ние шума зданиями-экранами или специально ус­тановленными экранами - один из наиболее рас­пространенных способов борьбы с транспортным шумом.

Уровень транспортного шума в значительной степени зависит от характера дорожного покры­тия. В некоторых европейских странах дороги по­крываются специальным пористым асфальтом.Если же звукоизоляция и звукопоглощение не снижают шум до допустимого уровня, применяют средства индивидуальной защиты: ушные заглуш­ки, наушники, каски, противошумные вкладыши «беруши».

Решение проблемы шума имеет еще одно, не­малое препятствие - непонимание, недооценка фактора вредного влияния шума на организм, не­достаточный уровень культуры. Требование обе­регать тишину где бы то ни было должно стать непреложным законом для каждого. Это требова­ние особенно необходимо соблюдать в условиях жизни большого города.

Защита от вибрации осуществляется так же, как и от шума, методами вибропоглощения и виб­роизоляции.

Вибропоглощение достигается за счет покры­тия поверхностей вибрирующих машин мягкими материалами - пластмассой, специальной масти­кой, которые рассеивают механические колеба­ния, преобразуя их энергию в тепловую. Виброизоляций осуществляется установ­кой вибрирующих машин на резиновые про­кладки, столбики, пружины. Эти элементы ог­раничивают передачу вибрации от машины на основание, на котором она установлена. При­мером виброизоляторов могут служить пру­жинные амортизаторы, устанавливаемые на автомобилях и ограничивающие передачу ко­лебаний на машину и водителя со стороны до­роги.

Но самое основное в борьбе с вибрацией - это добиться того, чтобы машина меньше вибрирова­ла. Вращающиеся части машин должны быть от­балансированы, а сама машина устойчиво стоять на основании. Погасить вибрацию можно, закре­пив на машине дополнительный груз или устано­вив ее на массивном фундаменте, который гасит колебания.

Бытовая техника - холодильники, стиральные машины и т.д. - также могут вызывать вибрацию, а следовательно, и шум. Чтобы их устранить, нуж­но в мастерской отбалансировать ее вращающие­ся элементы, а саму машину жестко установить на основании или подложить под нее толстую ре­зиновую прокладку.

Шум и вибрации, превышающие пределы громкости и частоты звуковых колебаний, представляют собой профессиональную вредность. Шум - это сочетание звуков различной интенсивности и частоты, которое оказывает раздражающее и вредное действие на организм человека. Под влиянием шума у человека может изменяться кровяное давление, работа желудочно-кишечного тракта, а длительное его действие в ряде случаев приводит к частичной или полной потере слуха. Шум влияет на производительность труда рабочих, ослабляет внимание, вызывает тугоухость и глухоту, раздражает нервную систему, в результате чего снижается восприимчивость к сигналам опасности, что может привести к несчастному случаю.

Шум различают Ударный (ковка, клепка, штамповка и пр.), Механический (трение и биение узлов и деталей машин), Газо- и Гидродинамический (шум в аппаратах и трубопроводах при больших скоростях движения воздуха, газа и жидкости).

Шумы классифицируются по характеру спектра (на широкополосные, с непрерывным спектром шириной более одной октавы; тональные, в спектре которых имеются слышимые дискретные тона); по временным характеристикам (на постоянные, уровень звука которых за 8-часовой рабочий день изменяется во времени не более чем на 5 дБ при измерениях на временной характеристике «медленно» шумомера по ГОСТ 17187-71; непостоянные, уровень звука которых за 8-часовой рабочий день изменяется во времени не менее чем на 5 дБ при измерениях па временной характеристике «медленно» шумомера по ГОСТ 17187-71).

Кроме того, непостоянные шумы подразделяются на:

· колеблющиеся во времени, уровень звука которых непрерывно изменяется во времени; прерывистые, уровень звука которых резко падает до уровня фонового шума;

· импульсные, состоящие из одного или нескольких звуковых сигналов каждый длительностью менее 1 с, при этом уровни звука в дБ при включении характеристик «медленно» и «импульс» шумомера по ГОСТ 17187-81 отличаются не менее чем на 10 дБ.

Характеристикой постоянного шума на рабочих местах являются уровни звуковых давлений в октавных полосах (в дБ) со среднегеометрическими частотами 63, 125, 250, 500, 1000, 2000, 4000, 8000 Неопределяемые по формуле

Где: Р - среднеквадратичная величина звукового давления, Па;

Ро- 2-10-5-пороговая величина среднеквадратичного звукового давления, Па.

При измерении шума по шкале А шумомеры по ГОСТ 17187-81 Р принимают как Ра, определяемая по среднеквадратичной величине звукового давления с учетом коррекции А шумомера (в Па).

Характеристикой непостоянного шума на рабочих местах является эквивалентный (по энергии) уровень шума (в дБ), определяемый по ГОСТ 20445-75.

Минимальная сила звука, которая воспринимается человеческим ухом, называется Порогом слышимости. Наибольшая сила звука, превышение которой приводит к ощущению боли, называется Болевым порогом. Диапазон звуков, воспринимаемых ухом человека, укладывается в шкалу 0…130 дБ. Нижняя граница шкалы соответствует порогу слышимости, верхняя - болевому порогу. Шум с уровнем 130…150 дБ способен вызвать механическое повреждение органов слуха. Безвредный (эталонный) уровень наибольшей громкости шума для человека составляет 70дБ (при частоте колебаний 1000 Гц).

По физической природе вибрация так же, как и шум, представляет собой колебательные движения материальных тел с частотами в пределах 12.-.8000 Гц, воспринимаемые человеком при его непосредственном контакте с колеблющимися поверхностями.

Вибрация - колебания частей производственного оборудования и трубопроводов, возникающие при неудовлетворительном их креплении, плохой балансировке движущихся и вращающихся частей машин и установок, работе, ударных механизмов и т. п. Вибрация характеризуется частотой (Т-1) колебаний (в Гц), амплитудой (в мм или см), ускорением (в м/с). При частоте колебаний более 25 Гц вибрация оказывает неблагоприятное действие на нервную систему, что может привести к развитию тяжелого нервного заболевания - вибрационной болезни.

По аналогии с шумом интенсивность вибрации может измеряться относительными величинами - децибелами и характеризоваться:

· уровнем колебательной скорости по формуле

Где: V -колебательная скорость, см/с;

Vo -пороговое значение колебательной скорости, принятое за единицу сравнения и равное 5*10-5 см/с при звуковом давлении Р=2-10-5 Па и амплитуде смещения 8*10-10 см;

· уровнем колебательного ускорения по формуле

Где: а - колебательное ускорение, см/с2;

а0, - пороговое значение колебательного ускорения, принятое за единицу сравнения и равное 3*10-2 см/с2 при звуковом давлении P =2*10-5 Па и амплитуде смещения 8*10-10 см.

К числу вредных работ на строительстве, которые образуют шум и вибрацию (сотрясения), относятся работы, связанные с использованием ручных пневматических машин, вибраторов, паркетно-строгальных и шлифовальных, машин, работы по погружению свай, рыхлению мерзлого грунта и др. Вибрацию различают — общую и местную. К общей относится вибрация конструкции или агрегата, на которых находится человек. Местная вибрация возникает от ручной машины, находящейся в руках рабочего, или элемента машины.

Предельно допустимые уровни общей вибрации устанавливаются для скорости как в абсолютных, так и в относительных величинах по спектру частот, включающему шесть октавных частотных полос; со среднегеометрическими значениями частот 2; 4; 8; 16; 31,5 и 63 Гц с амплитудой перемещения при гармонических колебаниях 3,11…0,005 мм и среднеквадратичном значении колебательной скорости 11,2…2 мм/с. Предельно допустимые значения местных вибраций при частоте вращения 1200-6000 мин равны 20-100 Гц с амплитудой колебаний 1,5-0,005 мм.

Уровень звукового давления измеряется шумомерами: типа Ш-63 (ИРПА), Ш-ЗМ, ИШВ (с интервалом измерения уровня звукового давления 30…140) и анализаторами спектра шума АШ-2М, ПФ-1, 0-34 (с интервалом измерения 40…10000). Наиболее широкое распространение получил шумомер типа Ш-ЗМ. Прибор предназначен для измерения уровня звукового давления и уровней шума. Местную вибрацию определяют при помощи низкочастотной (с интервалом измерения вибрации 1,4…350) и виброизмерителыюй аппаратуры (с интервалом измерения 70…130) вибрографов НВА-1, ВИП-2. Общую вибрацию, амплитуду и частоту колебания (колебание конструкций, на которых находится человек) измеряют электронными приборами ВЭП-4, ВИ6-5 МА, К.001 совместно с осциллографами Н-700, Н-004 и др. Основным регистрирующим механизмом в приборе является вибрационный датчик сейсмического типа ВД-4. Во время измерения датчик устанавливают на вибрирующую поверхность.

Следует отметить, что борьба с шумом и вибрацией представляет комплексную проблему, которая затрагивает интересы многих специалистов, строителей, конструкторов, врачей и акустиков. Для защиты от действия шума и вибрации применяют общие и индивидуальные средства.

К Общим средствам защиты относятся, прежде всего, усовершенствование строительных машин и технологического процесса (например, замена клепки электросваркой), планировка производственных помещений и изоляция шумных производственных процессов, применение звукоизолирующих и звукопоглощающих материалов в машинах, стенах, перекрытиях и перегородках. Эффективным средством защиты от распространения шума является укрытие машины кожухом из звукопоглощающих материалов (типа глушителей шума) и переход на дистанционное управление вибропневмопроцессамн. Зоны с уровнем звука выше 85 дБ должны быть обозначены знаками безопасности, а работающие обеспечены средствами индивидуальной защиты. В зонах с октавными уровнями звукового давления свыше 135 дБ пребывание людей запрещается.

К средствам защиты от вибрации могут быть отнесены всякого рода оградительные устройства, виброизолирующие, виброгасящие и вибропоглащающие устройства автоматического контроля, сигнализации и дистанционного управления.

К Средствам индивидуальной защиты, от вредных влияний шума относятся противошумы, шлемы, наушники, вкладыши, а от воздействия вибрации - применение виброгасящей обуви, специальных перчаток и рукавиц (при пользовании ручными вибраторами).

Воздействие ультразвука (при механической обработке материалов, сварке, лужении и т. п.) на организм человека происходит через воздух и непосредственно при соприкосновении человека с предметами. Физиологическое воздействие ультразвука вызывает в тканях человека тепловой эффект (повышение температуры) и переменное давление, а также быструю утомляемость, боль в ушах, нарушает равновесие и развивает невроз и гипотонию.

К средствам устранения и снижения вредного воздействия ультразвука относятся также конструктивные и планировочные решения, направленные на его локализацию. Это применение звукоизолирующих кожухов, полукожухов, экранов, размещение оборудования в отдельных помещениях и кабинетах, устройство системы блокировки, отключающей генератор источника ультразвука при нарушении звукоизоляции, применение дистанционного управления, облицовка отдельных помещений и кабин звукопоглощающими материалами.

Организационно-профилактические мероприятия по защите от вредного воздействия повышенных уровней включают инструктаж работающих, о характере действия ультразвука и рациональные режимы труда и отдыха.

В различных отраслях экономики имеются источники шума - это механическое оборудование, людские потоки, городской транспорт.

Шум - это совокупность апериодических звуков различной интенсивности и частоты (шелест, дребезжание, скрип, визг и т.п.). С физиологической точки зрения шум - это всякий неблагоприятно воспринимаемый звук. Звук -- колебания частиц воздушной среды, которые воспринимаются органами слуха человека, в направлении их распространения. Производственный шум характеризуется спектром, который состоит из звуковых волн разных частот. обычно слышимый диапазон 16 Гц - 20 кГц. Ультразвуковой диапазон -- свыше 20 кГц, инфразвук -- меньше 20 Гц, устойчивый слышимый звук -- 1000 Гц -3000Гц

Вредное воздействие шума:

  • · сердечно-сосудистая система;
  • · неравная система;
  • · органы слуха (барабанная перепонка)

Физические характеристики шума:

  • · интенсивность звука J, [Вт/м2];
  • · звуковое давление Р. [Па];
  • · частота f, [Гц]

Длительное воздействие шума на человека может привести к такому профессиональному заболеванию, как «шумовая болезнь».

По физической сущности шум -это волнообразное движение частиц упругой среды (газовой, жидкой или твердой) и поэтому характеризуется амплитудой колебания (м), частотой (Гц), скоростью распространения (м/с) и длиной волны (м). Громкость шума определяется субъективным восприятием слухового аппарата человека. Порог слухового восприятия зависит еще и от диапазона частот. Так, ухо менее чувствительно к звукам низких частот.

Воздействие шума на организм человека вызывает негативные изменения, прежде всего в органах слуха, нервной и сердечно-сосудистой системах. Степень выраженности этих изменений зависит от параметров шума, стажа работы в условиях воздействия шума, длительности воздействия шума в течение рабочего дня, индивидуальной чувствительности организма. Действие шума на организм человека отягощается вынужденным положением тела, повышенным вниманием, нервно-эмоциональным напряжением, неблагоприятным микроклиматом.

Для борьбы с шумом в помещениях проводятся мероприятия как технического, так и медицинского характера. Основными из них являются:

  • -устранение причины шума, то есть замена шумящего оборудования, механизмов на более современное не шумящее оборудование;
  • -изоляция источника шума от окружающей среды (применение глушителей, экранов, звукопоглощающих строительных материалов);
  • -ограждение шумящих производств зонами зеленых насаждений;
  • -применение рациональной планировки помещений;
  • -использование дистанционного управления при эксплуатации шумящего оборудования и машин;
  • -использование средств автоматики для управления и контроля технологическими производственными процессами;
  • -использование индивидуальных средств защиты (беруши, наушники,ватные тампоны);
  • -проведение периодических медицинских осмотров с прохождением аудиометрии;
  • -соблюдение режима труда и отдыха;
  • -проведение профилактических мероприятий, направленных на восстановление здоровья.

Под вибрацией понимают возвратно-поступательное движение твердого тела. Это явление широко распространено при работе различных механизмов и машин. Источники вибрации: транспортеры сыпучих грузов, перфораторы, электромоторы и т.д. Основные параметры вибрации: частота (Гц), амплитуда колебания (м), период колебания (с), виброскорость (м/с), виброускорение (м/сІ. В зависимости от характера контакта работника с вибрирующим оборудованием различают локальную и общую вибрацию. Локальная вибрация передается в основном через конечности рук и ног. Существует еще и смешанная вибрация, которая воздействует и на конечности, и на весь корпус человека. Локальная вибрация имеет место в основном при работе с вибрирующим ручным инструментом или настольным оборудованием. Общая вибрация преобладает на транспортных машинах, в производственных цехах тяжелого машиностроения, лифтах и т.д., где вибрируют полы, стены или основания оборудования.

Для снижения воздействия вибрирующих машин и оборудования на организм человека применяются следующие меры и средства:

  • -замена инструмента или оборудования с вибрирующими рабочими органами на невибрирующие в процессах, где это возможно (например, замена электромеханических кассовых машин на электронные);
  • -применение виброизоляции вибрирующих машин (например, применение рессор, резиновых прокладок, пружин, амортизаторов);
  • -использование автоматики в технологических процессах, где работают вибрирующие машины (например, управление по заданной программе);
  • -использование дистанционного управления в технологических процессах (например, использование телекоммуникаций для управления виботранспортером из соседнего помещения);
  • -использование ручного инструмента с виброзащитными рукоятками, специальной обуви и перчаток.

Для снижения шума в производственных помещениях применяют различные методы: уменьшение уровня шума в источнике его возник­новения; звукопоглощение и звукоизоляция; установка глушителей шума; рациональное размещение оборудования; применение средств индивидуальной защиты.

Наиболее эффективным является борьба с шумом в источнике его возникнове-ния. Шум механизмов возникает вследствие упругих коле­баний как всего механизма, так и отдельных его деталей. Причины возникновения шума - механические, аэроди-намические и электри­ческие явления, определяемые конструктивными и технологиче-скими особенностями оборудования, а также условиями эксплуатации. В связи с этим различают шумы механического, аэродинамического и электрического происхождения. Для уменьшения механического шума необходимо своевременно проводить ремонт оборудования, заменять ударные процессы на безударные, шире применять принуди-тельное смазывание трущихся поверхностей, применять балансировку враща­ющихся частей.

Значительное снижение шума достигается при замене подшипни­ков качения на подшипники скольжения (шум снижается на 10...15 дБ), зубчатых и цепных передач клиноременными и зубчатоременными передачами, металлических деталей - деталями из пластмасс.

Снижение аэродинамического шума можно добиться уменьшением скорости газо-вого потока, улучшением аэродинамики конструкции, звукоизоляции и установкой глу-шителей. Электромагнитные шумы снижают конструктивными изменениями в электри-ческих машинах.

Широкое применение получили методы снижения шума на пути его распростра-нения посредством установки звукоизолирующих и звукопоглощающих преград в виде экранов, перегородок, кожухов, кабин и др. Физическая сущность звукоизолирующих преград состоит в том, что наибольшая часть звуковой энергии отражается от специаль-но выполненных массивных ограждений из плотных твердых мате­риалов (металла, дерева, пластмасс, бетона и др.) и только незначительная часть проникает через ограждение. Уменьшение шума в звукопоглощающих преградах обусловлено перехо-дом колебательной энергии в тепловую благодаря внутреннему трению в звукопогло-щаю­щих материалах. Хорошие звукопоглощающие свойства имеют легкие и пористые материалы (минеральный войлок, стекловата, поролон и т.п.).



Средствами индивидуальной защиты от шума являются ушные вкладыши, наушники и шлемофоны. Эффективность индивидуальных средств защиты зависит от используемых материалов, конструкции, силы прижатия, правильности ношения. Ушные вкладыши вставляют в слуховой канал уха. Их изготовляют из легкого каучука, эластичных пластмасс, резины, эбонита и ультратонкого волокна. Они позволяют снизить уровень звукового давления на 10...15 дБ. В условиях повы­шенного шума рекомендуется применять наушники, которые обеспе­чивают надежную защиту органов слуха. Так, наушники ВЦНИОТ снижают уровень звукового давления на 7...38 дБ в диапазоне частот 125...8000 Гц. Для предохранения от воздействия шума с общим уровнем 120 дБ и выше рекомендуется применять шлемофоны, которые герметично закрывают всю околоушную область и снижают уровень звукового давления на 30...40 дБ в диапазоне частот 125...8000 Гц.

Для борьбы с вибрацией машин и оборудования и защиты работа­ющих от ви-брации используют различные методы. Борьба с вибрацией в источнике возникнове-ния связана с установлением причин появления механических колебаний и их устране-нием, например замена кривошипных механизмов равномерно вращающимися, тща-тельный подбор зубчатых передач, балансировка вращающихся масс и т.п. Для сни-жения вибрации широко используют эффект вибродемпфирования - превращение энергии механических колебаний в другие виды энер­гии, чаще всего в тепловую. С этой целью в конструкции деталей, через которые передается вибрация, применяют ма-териалы с большим внут­ренним трением: специальные сплавы, пластмассы, резины, вибродемпфирующие покрытия. Для предотвращения общей вибрации исполь-зуют установку вибрирующих машин и оборудования на самостоятельные виброгася-щие фундаменты. Для ослабления передачи вибрации от источников ее возникновения полу, рабочему месту, сиденью, рукоятке и т.п. широко применяют методы виброизо-ляции. Для этого на пути распространения вибрации вводят дополнительную упругую связь в виде виброизоляторов из резины, пробки, войлока, асбеста, стальных пружин. В качестве средств индивидуальной защиты работающих используют специальную обувь на массивной резиновой подошве. Для защиты рук служат рукавицы, перчатки, вклады-ши и прокладки, которые изготовляют из упругодемпфирующих материалов.

Важным для снижения опасного воздействия вибрации на организм человека является правильная организация режима труда и отдыха, постоянное медицинское наблюдение за состоянием здоровья, лечеб­но-профилактические мероприятия, такие как гидропроцедуры (теп­лые ванночки для рук и ног), массаж рук и ног, витаминизация и др. Для защиты рук от воздействия ультразвука при контактной передаче, а также при контактных смазках и т.д. операторы должны работать в рукавицах или перчатках, нарукавниках, не пропускающих влагу или контактную смазку.

Во время ремонта, испытания, отработки режима и налаживания установки, ко-гда возможен кратковременный контакт с жидкостью или ультразвуковым инструмен-том, в котором возбуждены колебания, для защиты рук необходимо применять две па-ры перчаток: наружные - резиновые и внутренние - хлопчатобумажные или перчат-ки резино­вые технические по ГОСТ 20010-74. В качестве средств индивидуаль­ной за-щиты работающих от воздействия шума и воздушного ультразвука следует применять противошумы, отвечающие требовани­ям ГОСТ 12.4.051-78.

При разработке нового и модернизации существующего оборудо­вания и приборов должны предусматриваться меры по максимальному ограничению ультразвука, передающегося контактным путем, как в источнике его образования (конструктивными и технологическими мерами), так и по пути распространения (средствами виброизоляции и вибропоглощения). При этом рекомендуется применять:

Дистанционное управление для исключения воздействия на работающих при контактной передаче;

Блокировку, т.е. автоматическое отключение оборудования, приборов при выполнении вспомогательных операций - загрузка и выгрузка продукции, нанесение контактных смазок и т.д.;

Приспособления для удержания источника ультразвука или обрабатываемой детали.

Ультразвуковые указатели и датчики, удерживаемые руками опера­тора, должны иметь форму, обеспечивающую минимальное напряже­ние мышц, удобное для работы расположение и соответствовать требованиям технической эстетики. Следует исклю-чить возможность контактной передачи ультразвука другим частям тела, кроме ног. Конструкция оборудования должна исключать возможность охлаждения рук работаю-щего. Поверхность оборудования и приборов в местах контакта с руками должна иметь коэффициент теплопроводности не более 0,5 Вт/м град.



Рис. 4.14. Средства коллективной защиты от шума на пути его распространения


Классификация средств коллективной защиты от шума представ­лена на рис. 4.14. Акустические в свою очередь подразделяются на средства звукоизоляции, звукопоглощения и глушители.

При наличии в помещении одиночного источника шума, уровень интенсивности L (дБ) можно рассчитать по формуле:

В том случае, когда в расчетную точку попадает шум от нескольких источников, находящихся в помещении, их интенсивности складыва­ют: . Разделив левую и правую части этого выраже­ния на (пороговую интенсивность звука) и прологарифмировав, получим:

.

где L 1 , L 2 , ..., L n - уровни интенсивности звука, создаваемые каждым источником в расчетной точке при одиночной работе.

Если имеется n источников шума с одинаковым уровнем интен­сивности звука , то общий уровень интенсивности звука

.

Установка звукопоглощающих облицовок и объемных звукопоглотителей увеличивает эквивалентную площадь поглощения. Для облицовки помещения используются стекловата, минеральная и капроно­вая вата, мягкие пористые волокнистые материалы, а также жесткие плиты на минеральной основе, т.е. материалы, имеющие высокие коэффициенты звукопоглощения.

Эффективность снижения уровня шума ( , дБ) в помещении

где L - расчетный уровень интенсивности звука (или звукового дав­ления), дБ; - допустимый уровень интенсивности звука (звуко­вого давления), дБ, согласно действующим нормативам.

Эффективность установок облицовок (дБ) можно приближенно определить по формуле:

где A 2 и A 1 - соответственно эквивалентная площадь поглощения после и до установки облицовки.

Эквивалентная площадь поглощения

здесь - средний коэффициент звукопоглощения внутренних по­верхностей помещения площадью .

Эффективность звукоизоляции однородной перегородки (дБ) рас­считывается по формуле:

, (4.5)

где G - масса одного м 2 перегородки, кг; f - частота, Гц.

Видно, что снижение шума за счет установки перегородки зависит от ее массивности и от частоты звука. Таким образом, одна и та же перегородка будет более эффективной на высоких частотах, чем на низких.

Эффективность установки кожуха (дБ)

,

где a - коэффициент звукопоглощения материала, нанесенного на внутреннюю поверхность кожуха, - звукоизоляция стенок кожуха, определяемая по формуле (4.5).

Методы и средства коллективной защиты от вибрации. Классифи­кация методов и средств защиты от вибрации представлена на рис. 4.15.

Виброизоляцией называется уменьшение степени передачи вибрации от источника к защищаемым объектам.

Виброизоляцию можно оценивать через коэффициент передачи

,

где f и - частота возмущающей силы и собственная частота системы при наличии виброизолирующего слоя (Гц).

Эффективность виброизоляции определяется по формуле:

.

Чем выше частота возмущающей силы по сравнению с собственной, тем больше виброизоляция. При f < возмущающая сила целиком передается основанию. При f = происходит резонанс и резкое уси­ление вибрации, а при f >2 обеспечивается виброизоляция, пропор­циональная коэффициенту передачи.

Собственная частота системы

где q - жесткость виброизолятора; g - ускорение свободного паде­ния; х - статическая осадка виброизолятора под воздействием собст­венной массы.

Виброизоляция используется при виброзащите от действия наполь­ных и ручных механизмов. Компрессоры, насосы, вентиляторы, станки могут устанавливаться на амортизаторы (резиновые, металлические или комбинированные) или упругие основания в виде элементов массы и вязкоупругого слоя. Для ручного инструмента наиболее эффективна многозвенная система виброизоляции, когда между рукой и инстру­ментом проложены слои с различной массой и упругостью.

Выбор гашения вибрации осуществляется за счет активных потерь ли превраще-ния колебательной энергии в другие ее виды, например в тепловую, электрическую, электромагнитную. Виброгашение может быть реализовано в случаях, когда конструк-ция выполнена из материалов с большими внутренними потерями; на ее поверхность нанесены вибропоглощающие материалы; используется контактное трение двух «мате-риалов; элементы конструкции соединены сердечниками электромагнитов с замкнутой обмоткой и др.



Рис. 4.15. Классификация методов и средств защиты от вибрации