Глазной хрусталик. Строение хрусталика

Огромный пляж из голых галек - На все глядящий без пелен - И зоркий, как глазной хрусталик, Незастекленный небосклон.

Б. Пастернак

12.1. Строение хрусталика

Хрусталик является частью светопроводящей и светопреломляющей системы глаза. Это прозрачная, двояковыпуклая биологическая линза, обеспечивающая динамичность оптики глаза благодаря механизму аккомодации.

В процессе эмбрионального развития хрусталик формируется на 3- 4-й неделе жизни зародыша из эк-

тодермы, покрывающей стенку глазного бокала. Эктодерма втягивается в полость глазного бокала, и из нее формируется зачаток хрусталика в виде пузырька. Из удлиняющихся эпителиальных клеток внутри пузырька образуются хрусталиковые волокна.

Хрусталик имеет форму двояковыпуклой линзы. Передняя и задняя сферичные поверхности хрусталика имеют разный радиус кривизны (рис. 12.1). Передняя поверх-

Рис. 12.1. Строение хрусталика и расположение поддерживающей его цинновой связки.

ность более плоская. Радиус ее кривизны (R = 10 мм) больше, чем радиус кривизны задней поверхности (R = 6 мм). Центры передней и задней поверхностей хрусталика называют соответственно передним и задним полюсами, а соединяющую их линию - осью хрусталика, длина которой составляет 3,5-4,5 мм. Линия перехода передней поверхности в заднюю - это экватор. Диаметр хрусталика 9-10 мм.

Хрусталик покрыт тонкой бесструктурной прозрачной капсулой. Часть капсулы, выстилающая переднюю поверхность хрусталика, имеет название «передняя капсула» («передняя сумка») хрусталика. Ее толщина 11-18 мкм. Изнутри передняя капсула покрыта однослойным эпителием, а задняя его не имеет, она почти в 2 раза тоньше передней. Эпителий передней капсулы играет важную роль в метаболизме хрусталика, характеризуется высокой активностью окислительных ферментов по сравнению с центральным отделом линзы. Эпителиальные клетки активно размножаются. У экватора они удлиняются, формируя зону роста хрусталика. Вытягивающиеся клетки превращаются в хрусталиковые волокна. Молодые лентовидные клетки оттесняют старые волокна к центру. Этот процесс непрерывно протекает на протяжении всей жизни. Центрально расположенные волокна теряют ядра, обезвоживаются и сокращаются. Плотно наслаиваясь друг на друга, они формируют ядро хрусталика (nucleus lentis). Размер и плотность ядра с годами увеличиваются. Это не отражается на степени прозрачности хрусталика, однако вследствие снижения общей эластичности постепенно уменьшается объем аккомодации (см. раздел 5.5). К 40- 45 годам жизни уже имеется достаточно плотное ядро. Такой механизм роста хрусталика обеспечивает стабильность его наружных размеров. Замкнутая капсула хрусталика не позволяет погибшим клеткам слущи-

ваться наружу. Как и все эпителиальные образования, хрусталик в течение всей жизни растет, но размер его практически не увеличивается.

Молодые волокна, постоянно образующиеся на периферии хрусталика, формируют вокруг ядра эластичное вещество - кору хрусталика (cortex lentis). Волокна коры окружены специфическим веществом, имеющим одинаковый с ними коэффициент преломления света. Оно обеспечивает их подвижность при сокращении и расслаблении, когда хрусталик меняет форму и оптическую силу в процессе аккомодации.

Хрусталик имеет слоистую структуру - напоминает луковицу. Все волокна, отходящие от зоны роста по окружности экватора, сходятся в центре и образуют трехконечную звезду, которая видна при биомикроскопии, особенно при появлении помутнений.

Из описания строения хрусталика видно, что он является эпителиальным образованием: в нем нет ни нервов, ни кровеносных и лимфатических сосудов.

Артерия стекловидного тела (a. hyaloidea), которая в раннем эмбриональном периоде участвует в формировании хрусталика, впоследствии редуцируется. К 7-8-му месяцу рассасывается сосудистое сплетение вокруг хрусталика.

Хрусталик со всех сторон окружен внутриглазной жидкостью. Питательные вещества поступают через капсулу путем диффузии и активного транспорта. Энергетические потребности бессосудистого эпителиального образования в 10-20 раз ниже, чем потребности других органов и тканей. Они удовлетворяются посредством анаэробного гликолиза.

По сравнению с другими структурами глаза хрусталик содержит наибольшее количество белков (35- 40 %). Это растворимые α- и β-кристаллины и нерастворимый альбуминоид. Белки хрусталика органоспецифичные. При иммунизации

к этому белку может возникнуть анафилактическая реакция. В хрусталике есть углеводы и их производные, восстановители глютатиона, цистеина, аскорбиновой кислоты и др. В отличие от других тканей в хрусталике мало воды (до 60- 65 %), причем с возрастом ее количество уменьшается. Содержание белка, воды, витаминов и электролитов в хрусталике значительно отличается от тех пропорций, которые выявляются во внутриглазной жидкости, стекловидном теле и плазме крови. Хрусталик плавает в воде, но, несмотря на это, является дегидрированньм образованием, что объясняется особенностями водно-электролитного транспорта. В линзе высокий уровень ионов калия и низкий уровень ионов натрия: концентрация ионов калия в 25 раз выше, чем в водянистой влаге глаза и стекловидном теле, а концентрация аминокислот в 20 раз выше.

Капсула хрусталика обладает свойством избирательной проницаемости, поэтому химический состав прозрачного хрусталика поддерживается на определенном уровне. Изменение состава внутриглазной жидкости отражается на состоянии прозрачности хрусталика.

У взрослого человека хрусталик имеет легкий желтоватый оттенок, интенсивность которого с возрастом может усиливаться. Это не отражается на остроте зрения, однако может повлиять на восприятие синего и фиолетового цветов.

Хрусталик располагается в полости глаза во фронтальной плоскости между радужкой и стекловидным телом, разделяя глазное яблоко на передний и задний отделы. Спереди хрусталик служит опорой для зрачковой части радужки. Его задняя поверхность располагается в углублении стекловидного тела, от которого хрусталик отделяет узкая капиллярная щель, расширяющаяся при скоплении в ней экссудата.

Хрусталик сохраняет свое положение в глазу при помощи волокон круговой поддерживающей связки ресничного тела (циннова связка). Тонкие (толщиной 20-22 мкм) паутинные нити отходят радиальными пучками от эпителия цилиарных отростков, частично перекрещиваются и вплетаются в капсулу хрусталика на передней и задней поверхностях, обеспечивая воздействие на капсулу хрусталика при работе мышечного аппарата ресничного (цилиарного) тела.

12.2. Функции хрусталика

Хрусталик выполняет в глазу ряд очень важных функций. Прежде всего он является средой, через которую световые лучи беспрепятственно проходят к сетчатке. Это функция светопроведения. Она обеспечивается основным свойством хрусталика - его прозрачностью.

Главная функция хрусталика - светопреломление. По степени преломления световых лучей он занимает второе место после роговицы. Оптическая сила этой живой биологической линзы в пределах 19,0 дптр.

Взаимодействуя с цилиарным телом, хрусталик обеспечивает функцию аккомодации. Он способен плавно изменять оптическую силу. Саморегулирующийся механизм фокусировки изображения (см. раздел 5.5) возможен благодаря эластичности хрусталика. Этим обеспечивается динамичность рефракции.

Хрусталик делит глазное яблоко на два неравнозначных отдела - меньший передний и больший задний. Это перегородка или разделительный барьер между ними. Барьер защищает нежные структуры переднего отдела глаза от давления большой массы стекловидного тела. В том случае, когда глаз лишается хрусталика, стекловидное тело перемещается кпереди. Изменяются анатомические взаимоотношения, а вслед за ними и функции. Затрудня-

ются условия гидродинамики глаза за счет сужения (сдавления) угла передней камеры глаза и блокады области зрачка. Возникают условия к развитию вторичной глаукомы. При удалении хрусталика вместе с капсулой возникают изменения и в заднем отделе глаза вследствие вакуумного эффекта. Стекловидное тело, получившее некоторую свободу перемещения, отходит от заднего полюса и ударяется о стенки глаза при движениях глазного яблока. В этом причина возникновения тяжелой патологии сетчатки, такой как отек, отслойка, кровоизлияния, разрывы.

Хрусталик является преградой для проникновения микробов из передней камеры в полость стекловидного тела - защитный барьер.

12.3. Аномалии развития хрусталика

Пороки развития хрусталика могут иметь разные проявления. Любые изменения формы, размеров и локализации хрусталика вызывают выраженные нарушения его функции.

Врожденная афакия - отсутствие хрусталика - встречается редко и, как правило, сочетается с другими пороками развития глаза.

Микрофакия - маленький хрусталик. Обычно эта патология сочета-

ется с изменением формы хрусталика - сферофакией (шаровидный хрусталик) или нарушением гидродинамики глаза. Клинически это проявляется высокой близорукостью с неполной коррекцией зрения. Маленький круглый хрусталик, подвешенный на длинных слабых нитях круговой связки, имеет значительно большую, чем в норме, подвижность. Он может вставиться в просвет зрачка и вызвать зрачковый блок с резким повышением внутриглазного давления и болевым синдромом. Чтобы освободить хрусталик, нужно медикаментозным путем расширить зрачок.

Микрофакия в сочетании с подвывихом хрусталика является одним из проявлений синдрома Марфана, наследственного порока развития всей соединительной ткани. Эктопия хрусталика, изменение его формы вызваны гипоплазией поддерживающих его связок. С возрастом отрыв цинновой связки увеличивается. В этом месте стекловидное тело выпячивается в виде грыжи. Экватор хрусталика становится видимым в области зрачка. Возможен и полный вывих хрусталика. Помимо глазной патологии, для синдрома Марфана характерны поражение опорно-двигательного аппарата и внутренних органов (рис. 12.2).

Рис. 12.2. Синдром Марфана.

а - экватор хрусталика виден в области зрачка; б - кисти рук при синдроме Марфана.

Нельзя не обратить внимания на особенности внешнего вида больного: высокий рост, непропорционально длинные конечности, тонкие, длинные пальцы рук (арахнодактилия), слабо развитые мышцы и подкожная жировая клетчатка, искривление позвоночника. Длинные и тонкие ребра образуют грудную клетку необычной формы. Помимо этого, выявляют пороки развития сердечно-сосудистой системы, вегетативно-сосудистые расстройства, дисфункцию коркового вещества надпочечников, нарушение суточного ритма выведения глюкокортикоидов с мочой.

Микросферофакия с подвывихом или полным вывихом хрусталика отмечается и при синдроме Марчезани - системном наследственном поражении мезенхимальной ткани. Больные с этим синдромом в отличие от больных с синдромом Марфана имеют совершенно иной внешний вид: низкий рост, короткие руки, которыми им трудно обхватить собственную голову, короткие и толстые пальцы (брахидактилия), гипертрофированные мышцы, асимметричный сдавленный череп.

Колобома хрусталика - дефект ткани линзы по средней линии в нижнем отделе. Данная патология наблюдается крайне редко и обычно сочетается с колобомой радужки, цилиарного тела и хориоидеи. Такие дефекты образуются вследствие неполного закрытия зародышевой щели при формировании вторичного глазного бокала.

Лентиконус - конусовидное выпячивание одной из поверхностей хрусталика. Другая разновидность патологии поверхности линзы - лентиглобус: передняя или задняя поверхность хрусталика имеет шаровидную форму. Каждая из этих аномалий развития обычно отмечается на одном глазу, может сочетаться с помутнениями в хрусталике. Клинически лентиконус и лентиглобус проявляются усилением

рефракции глаза, т. е. развитием миопии высокой степени и труднокорригируемого астигматизма.

При аномалиях развития хрусталика, не сопровождающихся глаукомой или катарактой, специального лечения не требуется. В тех случаях, когда вследствие врожденной патологии хрусталика возникает не корригируемая очками аномалия рефракции, измененный хрусталик удаляют и заменяют его искусственным (см. раздел 12.4).

12.4. Патология хрусталика

Особенности строения и функций хрусталика, отсутствие нервов, кровеносных и лимфатических сосудов определяют своеобразие его патологии. В хрусталике не бывает воспалительных и опухолевых процессов. Основные проявления патологии хрусталика - нарушение его прозрачности и потеря правильного места расположения в глазу.

12.4.1. Катаракта

Любое помутнение хрусталика называется катарактой.

В зависимости от количества и локализации помутнений в хрусталике различают полярные (передние и задние), веретенообразные, зонулярные (слоистые), ядерные, кортикальные и полные катаракты (рис. 12.3). Характерный рисунок расположения помутнений в хрусталике может быть свидетельством врожденной или приобретенной катаракты.

12.4.1.1. Врожденная катаракта

Врожденные помутнения хрусталика возникают при воздействии токсичных веществ в период его формирования. Чаще всего это вирусные заболевания матери во время беременности, такие как

Рис. 12.3. Локализация помутнений при различных видах катаракт.

грипп, корь, краснуха, а также токсоплазмоз. Большое значение имеют эндокринные расстройства у женщины во время беременности и недостаточность функции паращитовидных желез, приводящая к гипокальциемии и нарушению развития плода.

Врожденные катаракты могут быть наследственными с доминантным типом передачи. В таких случаях заболевание чаще всего бывает двусторонним, нередко сочетается с пороками развития глаза или других органов.

При осмотре хрусталика можно выявить определенные признаки, характеризующие врожденные катаракты, чаще всего полярные или слоистые помутнения, которые имеют либо ровные округлые очертания, либо симметричный рисунок, иногда это может быть подобие снежинки или картины звездного неба.

Небольшие врожденные помутнения в периферических отделах хрусталика и на задней капсуле можно

обнаружить и в здоровых глазах. Это следы прикрепления сосудистых петель эмбриональной артерии стекловидного тела. Такие помутнения не прогрессируют и не мешают зрению.

Передняя полярная катаракта -

это помутнение хрусталика в виде круглого пятна белого или серого цвета, которое располагается под капсулой у переднего полюса. Оно образуется в результате нарушения процесса эмбрионального развития эпителия (рис. 12.4).

Задняя полярная катаракта по форме и цвету очень похожа на переднюю полярную катаракту, но располагается у заднего полюса хрусталика под капсулой. Участок помутнения может быть сращен с капсулой. Задняя полярная катаракта представляет собой остаток редуцированной эмбриональной артерии стекловидного тела.

В одном глазу могут отмечаться помутнения и у переднего, и у заднего полюса. В таком случае говорят о переднезадней полярной катаракте. Для врожденных полярных катаракт характерны правильные округлые очертания. Размеры таких катаракт небольшие (1-2 мм). Ино-

Рис. 12.4. Врожденная передняя полярная катаракта с остатками эмбриональной мембраны зрачка.

гда полярные катаракты имеют тонкий лучистый венчик. В проходящем свете полярная катаракта видна как черное пятно на розовом фоне.

Веретенообразная катаракта занимает самый центр хрусталика. Помутнение располагается строго по переднезадней оси в виде тонкой серой ленты, по форме напоминающей веретено. Оно состоит из трех звеньев, трех утолщений. Это цепочка соединенных между собой точечных помутнений под передней и задней капсулами хрусталика, а также в области его ядра.

Полярные и веретенообразные катаракты обычно не прогрессируют. Пациенты с раннего детства приспосабливаются смотреть через прозрачные участки хрусталика, нередко имеют полное или достаточно высокое зрение. При данной патологии лечение не требуется.

Слоистая (зонулярная) катаракта встречается чаще других врожденных катаракт. Помутнения располагаются строго в одном или нескольких слоях вокруг ядра хрусталика. Прозрачные и мутные слои чередуются. Обычно первый мутный слой располагается на границе эмбрионального и «взрослого» ядер. Это хорошо видно на световом срезе при биомикроскопии. В проходящем свете такая катаракта видна как темный диск с ровными краями на фоне розового рефлекса. При широком зрачке в ряде случаев определяются еще и локальные помутнения в виде коротких спиц, которые расположены в более поверхностных слоях по отношению к мутному диску и имеют радиальное направление. Они как будто сидят верхом на экваторе мутного диска, поэтому их называют «наездниками». Только в 5 % случаев слоистые катаракты бывают односторонними.

Двустороннее поражение хрусталиков, четкие границы прозрачных и мутных слоев вокруг ядра, симметричное расположение периферических спицеобразных помутнений с

относительной упорядоченностью рисунка свидетельствуют о врожденной патологии. Слоистые катаракты могут развиться и в постнатальном периоде у детей с врожденной или приобретенной недостаточностью функции паращитовидных желез. У детей с симптомами тетании обычно выявляют слоистую катаракту.

Степень снижения зрения определяется плотностью помутнений в центре хрусталика. Решение вопроса о хирургическом лечении зависит главным образом от остроты зрения.

Тотальная катаракта встречается редко и всегда бывает двусторонней. Все вещество хрусталика превращается в мутную мягкую массу вследствие грубого нарушения эмбрионального развития хрусталика. Такие катаракты постепенно рассасываются, оставляя после себя сращенные друг с другом сморщенные мутные капсулы. Полное рассасывание вещества хрусталика может произойти еще до рождения ребенка. Тотальные катаракты приводят к значительному снижению зрения. При таких катарактах требуется хирургическое лечение в первые месяцы жизни, так как слепота на оба глаза в раннем возрасте является угрозой развития глубокой, необратимой амблиопии - атрофии зрительного анализатора вследствие его бездействия.

12.4.1.2. Приобретенная катаракта

Катаракта - наиболее часто наблюдающееся заболевание глаз. Эта патология возникает главным образом у пожилых людей, хотя может развиться в любом возрасте вследствие разных причин. Помутнение хрусталика - это типовая ответная реакция его бессосудистого вещества на воздействие любого неблагоприятного фактора, а также на изменение состава внутриглазной жидкости, окружающей хрусталик.

При микроскопическом исследовании мутного хрусталика выявляют набухание и распад волокон, которые теряют связь с капсулой и сокращаются, между ними образуются вакуоли и щели, заполненные белковой жидкостью. Клетки эпителия набухают, теряют правильные очертания, нарушается их способность воспринимать красители. Ядра клеток уплотняются, интенсивно окрашиваются. Капсула хрусталика изменяется незначительно, что при выполнении операции позволяет сохранить капсульный мешок и использовать его для фиксации искусственного хрусталика.

В зависимости от этиологического фактора выделяют несколько видов катаракт. Для простоты изложения материала разделим их на две группы: возрастные и осложненные. Возрастные катаракты можно рассматривать как проявление процессов возрастной инволюции. Осложненные катаракты возникают при воздействии неблагоприятных факторов внутренней или внешней среды. Определенную роль в развитии катаракты играют иммунные факторы (см. главу 24).

Возрастная катаракта. Раньше ее называли старческой. Известно, что возрастные изменения в разных органах и тканях протекают не у всех одинаково. Возрастную (старческую) катаракту можно обнаружить не только у стариков, но также у пожилых людей и даже людей активного зрелого возраста. Обычно она бывает двусторонней, однако помутнения не всегда появляются одновременно в обоих глазах.

В зависимости от локализации помутнений различают корковую и ядерную катаракты. Корковая катаракта встречается почти в 10 раз чаще, чем ядерная. Рассмотрим сначала развитие корковой формы.

В процессе развития любая катаракта проходит четыре стадии созревания: начальная, незрелая, зрелая и перезрелая.

Ранними признаками начальной корковой катаракты могут служить вакуоли, расположенные субкапсулярно, и водяные щели, образующиеся в корковом слое хрусталика. В световом срезе щелевой лампы они видны как оптические пустоты. При появлении участков помутнения эти щели заполняются продуктами распада волокон и сливаются с общим фоном помутнений. Обычно первые очаги помутнения возникают на периферических участках коры хрусталика и пациенты не замечают развивающейся катаракты до тех пор, пока не возникнут помутнения в центре, вызывающие снижение зрения.

Изменения постепенно нарастают как в переднем, так и в заднем корковых слоях. Прозрачные и мутнеющие части хрусталика неодинаково преломляют свет, в связи с этим больные могут предъявлять жалобы на диплопию или полиопию: вместо одного предмета они видят 2-3 или более. Возможны и другие жалобы. В начальной стадии развития катаракты при наличии ограниченных мелких помутнений в центре коры хрусталика пациентов беспокоит появление летающих мушек, которые перемещаются в ту сторону, куда смотрит больной. Длительность течения начальной катаракты может быть разной - от 1-2 до 10 лет и более.

Стадия незрелой катаракты характеризуется обводнением вещества хрусталика, прогрессированием помутнений, постепенным снижением остроты зрения. Биомикроскопическая картина представлена помутнениями хрусталика разной интенсивности, перемежающимися с прозрачными участками. При обычном наружном осмотре зрачок еще может быть черным или едва сероватым за счет того, что поверхностные субкапсулярные слои еще прозрачные. При боковом освещении образуется полулунная «тень» от радужки с той стороны, откуда падает свет (рис. 12.5, а).

Рис. 12.5. Катаракта. а - незрелая; б - зрелая.

Набухание хрусталика может привести к тяжелому осложнению - факогенной глаукоме, которую называют также факоморфической. В связи с увеличением объема хрусталика суживается угол передней камеры глаза, затрудняется отток внутриглазной жидкости, повышается внутриглазное давление. В этом случае необходимо удалить набухший хрусталик на фоне гипотензивной терапии. Операция обеспечивает нормализацию внутриглазного давления и восстановление остроты зрения.

Зрелая катаракта характеризуется полным помутнением и небольшим уплотнением вещества хрусталика. При биомикроскопии ядро и задние кортикальные слои не просматриваются. При наружном осмотре зрачок ярко-серого или молочно-белого цвета. Хрусталик кажется вставленным в просвет зрачка. «Тень» от радужки отсутствует (рис. 12.5, б).

При полном помутнении коры хрусталика утрачивается предметное зрение, но сохраняются светоощущение и способность определять местонахождение источника света (если сохранна сетчатка). Пациент может различать цвета. Эти важные показатели являются основанием для благоприятного прогноза относительно возвращения полноценного зрения после удаления катарак-

ты. Если же глаз с катарактой не различает свет и тьму, то это свидетельство полной слепоты, обусловленной грубой патологией в зрительно-нервном аппарате. В этом случае удаление катаракты не приведет к восстановлению зрения.

Перезрелая катаракта встречается крайне редко. Ее называют также молочной или морганиевой катарактой по имени ученого, который впервые описал эту фазу развития катаракты (G. В. Morgagni). Она характеризуется полным распадом и разжижением мутного коркового вещества хрусталика. Ядро теряет опору и опускается вниз. Капсула хрусталика становится похожа на мешочек с мутной жидкостью, на дне которого лежит ядро. В литературе можно найти описание дальнейших изменений клинического состояния хрусталика в том случае, если операция не была произведена. После рассасывания мутной жидкости на какой-то промежуток времени зрение улучшается, а затем ядро размягчается, рассасывается и остается только сморщенная сумка хрусталика. При этом пациент проходит через многие годы слепоты.

При перезрелой катаракте существует опасность развития тяжелых осложнений. При рассасывании большого количества белковых масс возникает выраженная фагоцитар-

ная реакция. Макрофаги и белковые молекулы забивают естественные пути оттока жидкости, в результате чего развивается факогенная (факолитическая) глаукома.

Перезрелая молочная катаракта может осложниться разрывом капсулы хрусталика и выходом белкового детрита в полость глаза. Вслед за этим развивается факолитический иридоциклит.

При развитии отмеченных осложнений перезрелой катаракты необходимо срочно произвести удаление хрусталика.

Ядерная катаракта встречается редко: она составляет не более 8- 10 % от общего количества возрастных катаракт. Помутнение появляется во внутренней части эмбрионального ядра и медленно распространяется по всему ядру. Вначале оно бывает гомогенным и неинтенсивным, поэтому его расценивают как возрастное уплотнение или склерозирование хрусталика. Ядро может приобретать желтоватую, бурую и даже черную окраску. Интенсивность помутнений и окраски ядра нарастает медленно, постепенно снижается зрение. Незрелая ядерная катаракта не набухает, тонкие корковые слои остаются прозрачными (рис. 12.6). Уплотненное крупное ядро сильнее преломляет световые лучи, что кли-

Рис. 12.6. Ядерная катаракта. Световой срез хрусталика при биомикроскопии.

нически проявляется развитием близорукости, которая может достигать 8,0-9,0 и даже 12,0 дптр. При чтении пациенты перестают пользоваться пресбиопическими очками. В близоруких глазах катаракта обычно развивается по ядерному типу, и в этих случаях также происходит усиление рефракции, т. е. увеличение степени близорукости. Ядерная катаракта на протяжении нескольких лет и даже десятилетий остается незрелой. В редких случаях, когда происходит ее полное созревание, можно говорить о катаракте смешанного типа - ядерно-корковой.

Осложненная катаракта возникает при воздействии различных неблагоприятных факторов внутренней и внешней среды.

В отличие от корковых и ядерных возрастных катаракт для осложненных характерно развитие помутнений под задней капсулой хрусталика и в периферических отделах задней коры. Преимущественное расположение помутнений в заднем отделе хрусталика можно объяснить худшими условиями для питания и обмена веществ. При осложненных катарактах помутнения сначала появляются у заднего полюса в виде едва заметного облачка, интенсивность и размеры которого медленно увеличиваются до тех пор, пока помутнение не займет всю поверхность задней капсулы. Такие катаракты называют задними чашеобразными. Ядро и большая часть коры хрусталика остаются прозрачными, однако, несмотря на это, острота зрения значительно снижается из-за высокой плотности тонкого слоя помутнений.

Осложненная катаракта, обусловленная влиянием неблагоприятных внутренних факторов. Отрицательное воздействие на весьма уязвимые процессы обмена в хрусталике могут оказывать изменения, происходящие в других тканях глаза, или общая патология организма. Тяжелые рецидивирующие воспали-

тельные заболевания глаза, а также дистрофические процессы сопровождаются изменением состава внутриглазной жидкости, которое в свою очередь приводит к нарушению обменных процессов в хрусталике и развитию помутнений. Как осложнение основного глазного заболевания катаракта развивается при рецидивирующих иридоциклитах и хориоретинитах различной этиологии, дисфункции радужки и цилиарного тела (синдром Фукса), далеко зашедшей и терминальной глаукоме, отслойке и пигментной дегенерации сетчатки.

Примером сочетания катаракты с общей патологией организма может служить кахектическая катаракта, возникающая в связи с общим глубоким истощением организма при голодании, после перенесенных инфекционных заболеваний (тиф, малярия, оспа и др.), в результате хронической анемии. Катаракта может возникнуть на почве эндокринной патологии (тетания, миотоническая дистрофия, адипозогенитальная дистрофия), при болезни Дауна и некоторых кожных заболеваниях (экзема, склеродермия, нейродермиты, атрофическая пойкилодермия).

В современной клинической практике чаще всего приходится наблюдать диабетическую катаракту. Она развивается при тяжелом течении болезни в любом возрасте, чаще бывает двусторонней и характеризуется необычными начальными проявлениями. Субкапсулярно в переднем и заднем отделах хрусталика формируются помутнения в виде мелких, равномерно расположенных хлопьев, между которыми местами видны вакуоли и тонкие водяные щели. Необычность начальной диабетической катаракты заключается не только в локализации помутнений, но и главным образом в способности к обратному развитию при адекватном лечении диабета. У пожилых людей с выраженным склерозом ядра хрусталика диабетиче-

ские заднекапсулярные помутнения могут сочетаться с возрастной ядерной катарактой.

Начальные проявления осложненной катаракты, возникающей при нарушении обменных процессов в организме на почве эндокринных, кожных и других заболеваний, также характеризуются способностью к рассасыванию при рациональном лечении общего заболевания.

Осложненная катаракта, вызванная воздействием внешних факторов. Хрусталик очень чувствителен ко всем неблагоприятным факторам внешней среды, будь то механическое, химическое, термическое или лучевое воздействие (рис. 12.7, а). Он может изменяться даже в тех случаях, когда нет прямого повреждения. Достаточно того, что поражаются соседние с ним части глаза, поскольку это всегда отражается на качестве продукции и скорости обмена внутриглазной жидкости.

Посттравматические изменения в хрусталике могут проявляться не только помутнением, но и смещением хрусталика (вывихом или подвывихом) в результате полного или частичного отрыва цинновой связки (рис. 12.7, б). После тупой травмы на хрусталике может остаться круглый пигментный отпечаток зрачкового края радужки - так называемая катаракта, или кольцо Фоссиуса. Пигмент рассасывается в течение нескольких недель. Совсем иные последствия отмечаются в том случае, если после контузии возникает истинное помутнение вещества хрусталика, например розеточная, или лучистая, катаракта. Со временем помутнения в центре розетки усиливаются и зрение неуклонно снижается.

При разрыве капсулы водянистая влага, содержащая протеолитические ферменты, пропитывает вещество хрусталика, в результате чего он набухает и мутнеет. Постепенно происходят распад и рассасывание

Рис. 12.7. Посттравматические изменения в хрусталике.

а - инородное тело под капсулой помутневшего хрусталика; б - посттравматический вывих прозрачного хрусталика.

хрусталиковых волокон, после чего остается сморщенная хрусталиковая сумка.

Последствия ожогов и проникающих ранений хрусталика, а также экстренные меры помощи описаны в главе 23.

Лучевая катаракта. Хрусталик способен поглощать лучи с очень малой длиной волны в невидимой, инфракрасной, части спектра. Именно при воздействии этих лучей существует опасность развития катаракты. В хрусталике оставляют следы рентгеновские и радиевые лучи, а также протоны, нейтроны и другие элементы расщепления ядра. Воздействие на глаз ультразвука и тока СВЧ также может привести к

развитию катаракты. Лучи видимой зоны спектра (длина волны от 300 до 700 нм) проходят через хрусталик, не повреждая его.

Профессиональная лучевая катаракта может развиваться у рабочих горячих цехов. Большое значение имеют стаж работы, длительность непрерывного контакта с излучением и выполнение правил техники безопасности.

Необходимо соблюдать осторожность при проведении лучевой терапии в области головы, особенно при облучении глазницы. Для защиты глаз используют специальные приспособления. После взрыва атомной бомбы у жителей японских городов Хиросима и Нагасаки выявляли характерные лучевые катаракты. Из всех тканей глаза хрусталик оказался наиболее восприимчивым к жесткому ионизирующему излучению. У детей и молодых людей он более чувствителен, чем у лиц пожилого и старческого возраста. Объективные данные свидетельствуют о том, что катарактогенное воздействие нейтронного излучения в десятки раз сильнее, чем другие виды излучения.

Биомикроскопическая картина при лучевой катаракте, так же как и при других осложненных катарактах, характеризуется помутнениями в виде диска неправильной формы, располагающимися под задней капсулой хрусталика. Начальный период развития катаракты может быть длительным, иногда он составляет несколько месяцев и даже лет в зависимости от дозы облучения и индивидуальной чувствительности. Обратного развития лучевых катаракт не происходит.

Катаракта при отравлениях. В литературе описаны тяжелые случаи отравления спорыньей с расстройством психики, судорогами и тяжелой глазной патологией - мидриазом, нарушением глазодвигательной функции и осложненной катарактой, которую обнаруживали спустя несколько месяцев.

Токсическое воздействие на хрусталик оказывают нафталин, таллий, динитрофенол, тринитротолуол и нитрокраски. Они могут попадать в организм разными путями - через дыхательные пути, желудок и кожу. Экспериментальную катаракту у животных получают при добавлении в корм нафталина или таллия.

Осложненную катаракту могут вызвать не только токсичные вещества, но также избыток некоторых лекарств, например сульфаниламидов, и обычных ингредиентов пищи. Так, катаракта может развиться при кормлении животных галактозой, лактозой и ксилозой. Помутнения хрусталика, обнаруженные у больных галактоземией и галактозурией, - это не случайность, а следствие того, что галактоза не усваивается и накапливается в организме. Веских доказательств роли дефицита витаминов в возникновении осложненной катаракты не получено.

Токсические катаракты в начальном периоде развития могут рассосаться, если прекратилось поступление активнодействующего вещества в организм. Длительное воздействие катарактогенных агентов вызывает необратимые помутнения. В этих случаях требуется хирургическое лечение.

12.4.1.3. Лечение катаракты

В начальной стадии развития катаракты осуществляют консервативное лечение для предотвращения быстрого помутнения всего вещества хрусталика. С этой целью назначают закапывания препаратов, улучшающих обменные процессы. Эти препараты содержат цистеин, аскорбиновую кислоту, глутамин и другие ингредиенты (см. раздел 25.4). Результаты лечения не всегда убедительны. Редкие формы начальных катаракт могут рассосаться, если своевременно будет проведена рациональная терапия того заболе-

вания, которое явилось причиной образования помутнений в хрусталике.

Хирургическое удаление мутного хрусталика называется экстракцией катаракты.

Операцию по поводу катаракты выполняли еще 2500 лет до нашей эры, о чем свидетельствуют памятники Египта и Ассирии. Тогда использовали прием «низдавления», или «реклинации», хрусталика в полость стекловидного тела: иглой прокалывали роговицу, толчкообразно нажимали на хрусталик, отрывали цинновы связки и опрокидывали его в стекловидное тело. Только у половины больных операции были успешными, у остальных наступала слепота вследствие развития воспаления и других осложнений.

Первую операцию извлечения хрусталика при катаракте выполнил французский врач Ж. Давиель в 1745 г. С тех пор методика операции постоянно изменяется и совершенствуется.

Показанием к операции является снижение остроты зрения, приводящее к ограничению трудоспособности и дискомфорту в обычной жизни. Степень зрелости катаракты не имеет значения при определении показаний к ее удалению. Так, например, при чашеобразной катаракте ядро и кортикальные массы могут быть полностью прозрачными, однако тонкий слой плотных помутнений, локализующихся под задней капсулой в центральном отделе, резко снижает остроту зрения. При двусторонней катаракте сначала оперируют тот глаз, который имеет худшее зрение.

Перед операцией обязательно проводят исследование обоих глаз и оценку общего состояния организма. Врачу и пациенту всегда важен прогноз результатов операции в плане предупреждения возможных осложнений, а также относительно функции глаза после операции. Для

того чтобы составить представление о сохранности зрительно-нервного анализатора глаза, определяют его способность локализовать направление света (проекцию света), исследуют поле зрения и биоэлектрические потенциалы. Операцию удаления катаракты проводят и при выявленных нарушениях, рассчитывая восстановить хотя бы остаточное зрение. Хирургическое лечение абсолютно бесперспективно только при полной слепоте, когда глаз не ощущает света. В том случае, если обнаруживают признаки воспаления в переднем и заднем отрезках глаза, а также в его придатках, обязательно проводят противовоспалительную терапию до операции.

В процессе обследования может быть выявлена недиагностированная ранее глаукома. Это требует от врача особого внимания, так как при удалении катаракты из глаукомного глаза существенно возрастает опасность развития самого тяжелого осложнения - экспульсивной геморрагии, последствием которой может быть необратимая слепота. При глаукоме врач принимает решение о выполнении предварительной антиглаукоматозной операции или комбинированного вмешательства экстракции катаракты и антиглаукоматозной операции. Экстракция катаракты при оперированной, компенсированной глаукоме более безопасна, так как в ходе операции менее вероятны внезапные резкие перепады внутриглазного давления.

При определении тактики хирургического лечения врач учитывает и любые другие особенности глаза, выявленные в процессе обследования.

Общее обследование пациента преследует цель выявить возможные очаги инфекции, прежде всего в органах и тканях, расположенных рядом с глазом. До операции должны быть санированы очаги воспаления любой локализации. Особое внимание следует обратить на состояние

зубов, носоглотки и околоносовых пазух.

Анализы крови и мочи, ЭКГ и рентгеновское исследование легких помогают выявить заболевания, для устранения которых требуется экстренное или плановое лечение.

При клинически спокойном состоянии глаза и его придатков исследование микрофлоры содержимого конъюнктивального мешка не производят.

В современных условиях непосредственная предоперационная подготовка больного существенно упрощается, в связи с тем что все микрохирургические манипуляции малотравматичны, при их выполнении обеспечивается надежная герметизация полости глаза и пациенты после операции не нуждаются в строгом постельном режиме. Операция может быть выполнена амбулаторно.

Экстракцию катаракты производят с использованием микрохирургической техники. Это значит, что хирург осуществляет все манипуляции под микроскопом, применяет тончайшие микрохирургические инструменты и шовный материал, обеспечен удобным креслом. Подвижность головы пациента ограничена специальным изголовьем операционного стола, имеющим форму полукруглого столика, на котором лежат инструменты, на него опираются руки хирурга. Совокупность этих условий позволяет хирургу выполнять точные манипуляции без тремора пальцев рук и случайных отклонений головы пациента.

В 60-70-х годах прошлого века хрусталик удаляли из глаза целиком в сумке - интракапсулярная экстракция катаракты (ИЭК). Наиболее популярным был метод криоэкстракции, предложенный в 1961 г. польским ученым Крвавичем (рис. 12.8). Операционный доступ осуществляли сверху через дугообразный корнеосклеральный разрез по лимбу. Разрез большой - немного

Рис. 12.8. Интракапсулярная экстракция катаракты.

а - роговица поднята кверху, край радужки отведен книзу ирисретрактором, чтобы обнажить хрусталик, криоэкстрактор касается поверхности хрусталика, вокруг наконечника белое кольцо примораживания хрусталика; б - мутный хрусталик выводят из глаза.

меньше полуокружности роговицы. Он соответствовал диаметру удаляемого хрусталика (9-10 мм). Специальным инструментом - ирисретрактором захватывали верхний край зрачка и обнажали хрусталик. Охлажденный наконечник криоэкстрактора прикладывали к передней поверхности хрусталика, примораживали его и легко удаляли из глаза. Для герметизации раны накладывали 8-10 узловых швов или один непрерывный шов. В настоящее время этот простой способ применяют крайне редко из-за того, что в послеоперационном периоде, даже в отдаленные сроки, могут возникать тяжелые осложнения в заднем отделе глаза. Это объясняется тем, что после интракапсулярной экстракции катаракты вся масса стекловидного тела продвигается кпереди и занимает место удаленной линзы. Мягкая, податливая радужка не может сдержать перемещение стекловидного тела, в результате чего появляется гиперемия сосудов сетчатки ex vacuo (вакуумный эффект).

Вслед за этим могут возникать кровоизлияния в сетчатку, отек ее центрального отдела, участки отслоения сетчатки.

Позднее, в 80-90-х годах прошлого столетия, основным способом удаления мутного хрусталика стала экстракапсулярная экстракция катаракты (ЭЭК). Суть операции заключается в следующем: вскрывают переднюю капсулу хрусталика, удаляют ядро и кортикальные массы, а задняя капсула вместе с узким ободком передней капсулы остаются на месте и выполняют свою обычную функцию - отделяют передней отдел глаза от заднего. Они служат преградой для перемещения стекловидного тела кпереди. В связи с этим после экстракапсулярной экстракции катаракты возникает существенно меньше осложнений в заднем отделе глаза. Глаз легче выдерживает различные нагрузки при беге, толчках, подъеме тяжестей. Кроме того, сохранившаяся сумка хрусталика является идеальным местом для искусственной оптики.

Существуют разные варианты выполнения экстракапсулярной экстракции катаракты. Их можно разделить на две группы - мануальная и энергетическая хирургия катаракты.

При мануальной технике ЭЭК хирургический доступ почти вдвое короче, чем при интракапсулярной, так как он ориентирован только на выведение ядра хрусталика, диаметр которого у пожилого человека равен 5-6 мм.

Можно уменьшить операционный разрез до 3-4 мм, чтобы сделать операцию более безопасной. В этом случае приходится разрезать ядро хрусталика пополам в полости глаза двумя крючками, движущимися от противоположных точек экватора навстречу друг другу. Обе половинки ядра выводят поочередно.

В настоящее время мануальная хирургия катаракты уже вытеснена современными методами с использованием энергии ультразвука, воды или лазера для разрушения хрусталика в полости глаза. Это так называемая энергетическая хирургия, или хирургия малых разрезов. Она привлекает хирургов существенным снижением частоты развития осложнений в ходе операции, а также отсутствием послеоперационного астигматизма. Широкие операционные разрезы уступили место проколам в области лимба, которые не требуют наложения швов.

Техника ультразвуковой факоэмульсификации катаракты (ФЭК) была предложена в 1967 г. американским ученым C. D. Kelman. Широкое использование этого метода началось в 80-90-е годы.

Для выполнения ультразвуковой ФЭК созданы специальные приборы. Через прокол у лимба длиной 1,8-2,2 мм в глаз вводят наконечник соответствующего диаметра, несущий ультразвуковую энергию. Специальными приемами разделяют ядро на четыре фрагмента и поочередно разрушают их. Через тот же

Рис. 12.9. Энергетические методы экстракции катаракты.

а - ультразвуковая факоэмульсификация мягкой катаракты; б - лазерная экстракция твердой катаракты, самостоятельный раскол

ядра.

наконечник в глаз поступает сбалансированный солевой раствор BSS. Вымывание хрусталиковых масс происходит по аспирационному каналу (рис. 12.9, а).

В начале 80-х годов Н. Э. Темиров предложил гидромониторную факофрагментацию мягких катаракт путем передачи через специальный наконечник высокоскоростных импульсных потоков подогретого изотонического раствора натрия хлорида.

В 1994 г. группой отечественных офтальмологов (В. Г. Копаева, Ю. В. Андреев) под руководством академика С. Н. Федорова впервые в мире была разработана технология разрушения и эвакуации катаракты любой степени твердости с помощью лазерной энергии и оригинальной вакуумной установки. Известные другие лазерные системы позволяют эффективно разрушать только мягкие катаракты. Операцию выполняют бимануально через два прокола у лимба. На первом этапе расширяют зрачок и вскрывают переднюю капсулу хрусталика в виде круга диаметром 5- 7 мм. Затем в глаз вводят лазерный (диаметром 0,7 мм) и отдельно ирригационно-аспирационный (1,7 мм) наконечники (рис. 12.9, б). Они едва касаются поверхности хрусталика в центре. Хирург наблюдает, как в течение нескольких секунд «растаивает» ядро хрусталика и формируется глубокая чаша, стенки которой распадаются на фрагменты. При их разрушении снижают уровень энергии. Мягкие кортикальные массы аспирируют без использования лазера. Разрушение мягких и средней твердости катаракт происходит за короткий период времени - от нескольких секунд до 2-3 мин, для удаления плотных и очень плотных хрусталиков требуется от 4 до 6-7 мин.

Лазерная экстракция катаракты (ЛЭК) расширяет возрастные показания, поскольку в процессе операции не происходит нажима на хрусталик, нет необходимости в механической фрагментации ядра. Лазерный наконечник не нагревается в процессе работы, поэтому не нужно вводить большое количество сбалансированного солевого раствора. У пациентов моложе 40 лет часто не требуется включение лазерной энергии, так как мощная вакуумная система прибора справляется с отсасыванием мягкого вещества хрусталика. Складывающиеся мягкие ин-

траокулярные линзы вводят с помощью инжектора.

Экстракцию катаракты называют жемчужиной глазной хирургии. Это самая распространенная глазная операция. Она приносит глубокое удовлетворение хирургу и пациенту. Часто больные на ощупь приходят к врачу, а после операции сразу становятся зрячими. Операция позволяет вернуть ту остроту зрения, которая была в данном глазу до развития катаракты.

12.4.2. Вывих и подвывих хрусталика

Вывихом называют полный отрыв хрусталика от поддерживающей связки и смещение его в переднюю или заднюю камеру глаза. При этом происходит резкое снижение остроты зрения, так как из оптической системы глаза выпала линза силой 19,0 дптр. Вывихнутый хрусталик подлежит удалению.

Подвывих хрусталика - это частичный отрыв цинновой связки, который может иметь разную протяженность по окружности (см. рис. 12.7, б).

Врожденные вывихи и подвывихи хрусталика описаны выше. Приобретенное смещение биологической линзы происходит в результате тупых травм или грубых сотрясений. Клинические проявления подвывиха хрусталика зависят от величины образовавшегося дефекта. Минимальные повреждения могут остаться незамеченными, если не повреждена передняя пограничная мембрана стекловидного тела и хрусталик остался прозрачным.

Основной симптом подвывиха хрусталика - дрожание радужки (иридодонез). Нежная ткань радужки опирается на хрусталик у переднего полюса, поэтому дрожание подвывихнутой линзы передается

радужке. Иногда этот симптом можно увидеть, не применяя специальных методов исследования. В других случаях приходится внимательно наблюдать за радужкой при боковом освещении или в свете щелевой лампы, чтобы уловить легкую волну движений при небольших смещениях глазного яблока. При резких отведениях глаза вправо и влево легкие колебания радужки выявить не удается. Следует отметить, что иридодонез не всегда присутствует даже при заметных подвывихах линзы. Это происходит в тех случаях, когда вместе с надрывом цинновой связки в том же секторе появляется дефект в передней пограничной мембране стекловидного тела. При этом возникает ущемленная грыжа стекловидного тела, которая тампонирует образовавшееся отверстие, подпирает хрусталик и уменьшает его подвижность. В таких случаях подвывих линзы можно распознать по двум другим симптомам, выявляемым при биомикроскопии: это неравномерная глубина передней и задней камер глаза из-за более выраженного давления или перемещения стекловидного тела кпереди в зоне ослабления опоры хрусталика. При ущемленной и фиксированной спайками грыже стекловидного тела увеличивается задняя камера в данном секторе и одновременно изменяется глубина передней камеры глаза, чаще всего она становится меньше. В обычных условиях задняя камера недоступна осмотру, поэтому о глубине ее периферических отделов судят по косвенному признаку - разному расстоянию от края зрачка до хрусталика справа и слева или сверху и снизу.

Точное топографическое положение стекловидного тела, хрусталика и поддерживающей его связки за радужкой можно увидеть только при ультразвуковой биомикроскопии (УБМ).

При неосложненном подвывихе хрусталика острота зрения сущест-

венно не снижается и лечение не требуется, однако со временем могут развиться осложнения. Подвывихнутая линза может помутнеть или становится причиной развития вторичной глаукомы. В таких случаях встает вопрос об ее удалении. Своевременная диагностика подвывиха линзы позволяет правильно выбрать хирургическую тактику, оценить возможность укрепления капсулы и размещения в ней искусственного хрусталика.

12.4.3. Афакия и артифакия

Афакия - это отсутствие хрусталика. Глаз без хрусталика называется афакичным.

Врожденная афакия наблюдается редко. Обычно хрусталик удаляют хирургическим путем в связи с его помутнением или вывихом. Известны случаи выпадения хрусталика при проникающих ранениях.

При исследовании афакичного глаза обращают на себя внимание глубокая передняя камера и дрожание радужки (иридодонез). Если в глазу сохранилась задняя капсула хрусталика, то она сдерживает толчки стекловидного тела при движениях глаза и дрожание радужки выражено слабее. При биомикроскопии световой срез выявляет место расположения капсулы, а также степень ее прозрачности. В случае отсутствия хрусталиковой сумки стекловидное тело, удерживаемое только передней пограничной мембраной, прижимается к радужке и слегка проминирует в область зрачка. Такое состояние называют грыжей стекловидного тела. При разрыве мембраны в переднюю камеру выходят волокна стекловидного тела. Это осложненная грыжа.

Коррекция афакии. После удаления хрусталика резко изменяется рефракция глаза. Возникает гиперметропия высокой степени.

Преломляющая сила утраченного хрусталика должна быть компенсирована оптическими средствами - очками, контактной линзой или искусственным хрусталиком.

Очковую и контактную коррекцию афакии в настоящее время используют редко. При коррекции афакии эмметропичного глаза для дали потребуется очковое стекло силой +10,0 дптр, что существенно меньше, чем сила преломления удаленного хрусталика, которая в сред-

нем равна 19,0 дптр. Такая разница объясняется прежде всего тем, что очковая линза занимает другое место в сложной оптической системе глаза. Кроме того, стеклянная линза окружена воздухом, в то время как хрусталик - жидкостью, с которой имеет почти одинаковый коэффициент преломления света. Для гиперметропа силу стекла нужно увеличить на соответствующее количество диоптрий, у миопа, наоборот, - уменьшить. Если до опера-

Рис. 12.10. Конструкции различных моделей ИОЛ и место их фиксации в глазу.

ции миопия была близка к 19,0 дптр, то после операции слишком сильная оптика близоруких глаз полностью нейтрализуется удалением хрусталика и пациент будет обходиться без очков для дали.

Афакичный глаз неспособен к аккомодации, поэтому для работы на близком расстоянии назначают очки на 3,0 дптр сильнее, чем для дали. Очковую коррекцию нельзя использовать при монокулярной афакии. Линза +10,0 дптр является сильным увеличительным стеклом. Если она поставлена перед одним глазом, то в этом случае изображения в двух глазах будут слишком разные по величине, они не сольются в единый образ. При монокулярной афакии возможна контактная (см. раздел 5.9) или интраокулярная коррекция.

Интраокулярная коррекция афакии - это хирургическая операция, суть которой состоит в том, что помутневший или вывихнувшийся естественный хрусталик заменяют искусственной линзой нужной силы (рис. 12.11, а). Расчет диоптрийной силы новой оптики глаза выполняет врач, используя специальные таблицы, номограммы или компьютерную программу. Для расчета требуются следующие параметры: сила преломления роговицы, глубина передней камеры глаза, толщина хрусталика и длина глазного яблока. Общую рефракцию глаза планируют с учетом пожелания пациентов. Для тех из них, кто водит машину и ведет активную жизнь, чаще всего планируют эмметропию. Можно запланировать миопическую рефракцию низкой степени, если второй глаз близорукий, а также для тех пациентов, которые большую часть рабочего дня проводят за письменным столом, хотят писать и читать или выполнять другую точную работу без очков.

В последние годы появились бифокальные, мультифокальные, аккомодирующие, рефракционно-дифракционные интраокулярные лин-

зы (ИОЛ), позволяющие видеть предметы на разном расстоянии без дополнительной очковой коррекции.

Наличие искусственного хрусталика в глазу обозначают термином «артифакия». Глаз с искусственным хрусталиком называют артифакичным.

Интраокулярная коррекция афакии имеет ряд преимуществ перед очковой. Она более физиологична, устраняет зависимость пациентов от очков, не дает сужения поля зрения, периферических скотом, искажения предметов. На сетчатке формируется изображение нормальной величины.

В настоящее время существует множество конструкций ИОЛ (рис. 12.10). По принципу крепления в глазу выделяют три основных типа искусственных хрусталиков:

Переднекамерные линзы помещают углу передней камеры или крепят на радужке (рис. 12.11, б). Они контактируют с очень чувствительными тканями глаза - радужкой и роговицей, поэтому их редко используют в настоящее время;

Зрачковые линзы (пупиллярные) называют также ирисклипс-линзами (ИКЛ) (рис. 12.11, в). Их вставляют в зрачок по принципу клипсы, удерживаются эти линзы передними и задними опорными (гаптическими) элементами. Первый хрусталик такого типа - линза Федорова - Захарова - имеет 3 задние дужки и 3 передние антеннки. В 60-70-е годы XX в., когда выполняли в основном интракапсулярную экстракцию катаракты, линзу Федорова - Захарова широко использовали во всем мире. Главным ее недостатком является возможность вывиха опорных элементов или всей линзы;

Заднекамерныелинзы (ЗКЛ) размещают в капсуле хрусталика после удаления ядра и

Рис. 12.11. Искусственный и естественный хрусталик глаза.

а - мутный хрусталик, удаленный из глаза целиком в капсуле, рядом с ним искусственный хрусталик; б - артифакия: переднекамерная ИОЛ укреплена на радужке в двух местах; в- артифакия: ирис-клипс-линза располагается в зрачке; г - артифакия: заднекамерная ИОЛ располагается в капсуле хрусталика, виден световой срез передней и задней поверхностей ИОЛ.

кортикальных масс при экстракапсулярной экстракции катаракты (рис. 12.11, г). Они занимают место естественной линзы в общей сложной оптической системе глаза, поэтому обеспечивают наиболее высокое качество зрения. ЗКЛ лучше других укрепляют разделительный барьер между передним и задним отделами глаза, предупреждают развитие многих тяжелых послеоперационных осложнений, таких как вторичная глаукома, отслойка сетчатки и др. Они контактируют только с капсулой хрусталика, не имеющей нервов и сосудов, не способной к воспалительной реакции. Этот тип линз в настоящее время является предпочтительным.

ИОЛ изготавливают из жесткого (полиметилметакрилат, лейкосапфир и др.) и мягкого (силикон, гидрогель, акрилат, сополимер коллагена и др.) материала. Они могут быть моноили мультифокальными, сферическими, асферическими или торическими (для коррекции астигматизма).

В один глаз можно ввести два искусственных хрусталика. Если по каким-либо причинам оптика артифакичного глаза оказалась несовместимой с оптикой другого глаза, то ее дополняют еще одним искусственным хрусталиком необходимой оптической силы.

Технология изготовления ИОЛ постоянно совершенствуется, изменяются конструкции линз, как того требует современная хирургия катаракты.

Коррекция афакии может быть выполнена и другими хирургическими способами, основанными на усилении преломляющей способности роговицы (см. главу 5).

12.4.4. Вторичная, пленчатая катаракта и фиброз задней капсулы хрусталика

Вторичная катаракта возникает в афакичном глазу после экстракапсулярной экстракции катаракты. Это разрастание субкапсулярного эпителия хрусталика, оставшегося в экваториальной зоне хрусталиковой сумки.

При отсутствии ядра хрусталика эпителиальные клетки не стеснены, поэтому растут свободно, не вытягиваются. Они раздуваются в виде мелких прозрачных шариков разной величины и выстилают заднюю капсулу. При биомикроскопии эти клетки похожи на мыльные пузырьки или зерна икры в просвете зрачка (рис. 12.12, а). Их называют шарами Адамюка - Эльшнига по именам ученых, впервые описавших вторичную катаракту. В начальной стадии развития вторичной катарак-

ты субъективные симптомы отсутствуют. Острота зрения снижается, когда эпителиальные разрастания достигают центральной зоны.

Вторичная катаракта подлежит хирургическому лечению: производят вымывание эпителиальных разрастаний или дисцизию (рассечение) задней капсулы хрусталика, на которой размещаются шары Адамюка-Эльшнига. Дисцизию выполняют линейным разрезом в пределах зрачковой зоны. Операция может быть осуществлена и с помощью луча лазера. В этом случае вторичная катаракта разрушается также в пределах зрачка. Формируется круглое отверстие в задней капсуле хрусталика диаметром 2-2,5 мм. Если этого окажется недостаточно для обеспечения высокой остроты зрения, то отверстие может быть увеличено (рис. 12.12, б). В артифакичных глазах вторичная катаракта развивается реже, чем в афакичных.

Пленчатая катаракта формируется в результате самопроизвольного рассасывания хрусталика после травмы, остаются только сросшиеся передняя и задняя капсулы хрусталика в виде толстой мутной пленки (рис. 12.13).

Рис. 12.12. Вторичная катаракта и ее рассечение.

а - прозрачный трансплантат роговицы, афакия, вторичная катаракта; б - тот же глаз после лазерной дисцизии вторичной катаракты.

Рис. 12.13. Пленчатая катаракта. Большой дефект радужки после проникающего ранения глаза. Сквозь него видна пленчатая катаракта. Зрачок смещен книзу.

Пленчатые катаракты рассекают в центральной зоне лучом лазера или специальным ножом. В образовавшемся отверстии при наличии показаний может быть укреплен искусственный хрусталик специальной конструкции.

Фиброзом задней капсулы хрусталика принято обозначать уплотнение и помутнение задней капсулы после экстракапсулярной экстракции катаракты.

В редких случаях помутнение задней капсулы может быть обнаружено на операционном столе после удаления ядра хрусталика. Чаще всего помутнение развивается спустя 1-2 мес после операции из-за того, что задняя капсула была недостаточно очищена и остались невидимые тончайшие участки прозрачных масс хрусталика, которые впоследствии мутнеют. Такой фиброз задней капсулы считают осложнением экстракции катаракты. После операции всегда происходит сокращение и уплотнение задней капсулы как проявление физиологического фиброза, но при этом она остается прозрачной.

Рассечение помутневшей капсулы производят в тех случаях, когда резко снижена острота зрения. Иногда сохраняется достаточно высокое зрение даже при наличии значительных помутнений на задней капсуле хрусталика. Все зависит от локализации этих помутнений. Если в самом центре остался хотя бы небольшой просвет, этого может быть достаточно для прохождения световых лучей. В связи с этим вопрос о рассечении капсулы хирург решает только после оценки функции глаза.

Вопросы для самоконтроля

Познакомившись с особенностями строения живой биологической линзы, обладающей саморегулирующимся механизмом фокусировки изображения, вы можете установить ряд удивительных и в определенной мере загадочных свойств хрусталика.

Не будет вам трудна загадка, Когда уже прочли отгадку.

1.Хрусталик не имеет сосудов и нервов, но постоянно растет. Почему?

2.Хрусталик в течение всей жизни растет, а размер его практически не изменяется. Почему?

3.В хрусталике не бывает опухолей и воспалительных процессов. Почему?

4.Хрусталик со всех сторон окружен водой, но количество воды в веществе линзы с годами постепенно уменьшается. Почему?

5.Хрусталик не имеет кровеносных и лимфатических сосудов, однако может помутнеть при галактоземии, диабете, малярии, тифе и других общих заболеваниях организма. Почему?

6.На два афакичных глаза можно подобрать очки, а на один нельзя, если второй глаз факичный. Почему?

7.После удаления мутных хрусталиков, имеющих оптическую силу 19,0 дптр, назначают очковую коррекцию для дали не +19,0 дптр, а только +10,0 дптр. Почему?

Глаз человека - это сложная оптическая система, задачей которой является передача правильного изображения зрительному нерву. Составляющие органа зрения - это фиброзная, сосудистая, сетчатая оболочки и внутренние структуры.

Фиброзная оболочка - это роговица и склера. Сквозь роговицу преломленные попадают внутрь органа зрения. Непрозрачная склера исполняет роль каркаса и имеет защитные функции.

Сквозь сосудистую оболочку происходит питание глаз кровью, которая содержит питательные вещества и кислород.

Под роговицей находится радужка, обеспечивающая цвет глаз человека. В центре ее расположен зрачок, способный менять размер в зависимости от освещения. Между роговицей и находится внутриглазная жидкость, которая защищает роговицу от микробов.

Следующая часть сосудистой оболочки называется благодаря которому происходит выработка внутриглазной жидкости. Сосудистая оболочка находится в непосредственном контакте с сетчаткой и обеспечивает ее энергией.

Сетчатку составляют несколько слоев нервных клеток. Благодаря этому органу обеспечивается восприятие света и формирование изображения. После этого происходит передача информации через зрительный нерв в головной мозг.

Внутренняя часть органа зрения состоит из передней и задней камер, заполненных прозрачной внутриглазной жидкостью, хрусталика и стекловидного тела. имеет желеобразный вид.

Важная составляющая зрительной системы человека - это хрусталик. Функции хрусталика - обеспечение динамичности глазной оптики. Он помогает видеть разные предметы одинаково хорошо. Уже на 4-й неделе развития эмбриона начинает формироваться хрусталик. Строение и функции, а также принцип работы и возможные заболевания его мы рассмотрим в данной статье.

Строение

Этот орган похож на двояковыпуклую линзу, передняя и задняя поверхности которой имеют разную кривизну. Центральная часть каждой из них - это полюса, которые соединяются осью. Длина оси составляет приблизительно 3,5-4,5 мм. Обе поверхности соединяются по контуру, который называется экватором. Взрослый человек имеет размеры оптической линзы глаза 9-10 мм, сверху ее покрывает прозрачная капсула (передняя сумка), внутри которой находится слой эпителия. С противоположной стороны расположена задняя капсула, она такого слоя не имеет.

Возможность роста глазного хрусталика обеспечивается клетками эпителия, которые постоянно размножаются. Нервные окончания, кровеносные сосуды, лимфоидная ткань у хрусталика отсутствуют, это целиком эпителиальное образование. На прозрачность этого органа влияет химический состав внутриглазной жидкости, если этот состав меняется, возможно помутнение хрусталика.

Состав хрусталика

Состав этого органа следующий - 65% воды, 30% белка, 5% липидов, витаминов, различных неорганических веществ и их соединений, а также ферментов. Основной белок - это кристаллин.

Принцип работы

Хрусталик глаза - это анатомическая структура переднего отрезка глаза, в норме он должен быть идеально прозрачным. Принцип работы хрусталика - фокусирование отраженных от объекта лучей света в макулярную зону сетчатки. Чтобы изображение на сетчатке глаза было четким, он должен быть прозрачным. Когда свет попадает на сетчатку, возникает электрический импульс, который через зрительный нерв попадает в зрительный центр головного мозга. Задача мозга - интерпретировать то, что видят глаза.

Роль хрусталика в функционировании системы зрения человека очень важна. В первую очередь он имеет светопроводящую функцию, то есть обеспечивает прохождение светового потока к сетчатке. Светопроводящие функции хрусталика обеспечиваются его прозрачностью.

Кроме того, данный орган принимает активное участие в преломлении светового потока и имеет оптическую силу около 19 диоптрий. Благодаря хрусталику обеспечивается функционирование аккомодационного механизма, с помощью которого самопроизвольно регулируется фокусировка видимой картинки.

Этот орган помогает нам без труда переводить взгляд с отдаленных предметов на те, которые находятся вблизи, что обеспечивается изменением преломляющей силы глазного яблока. При сокращении волокон мышцы, которая окружает хрусталик, происходит уменьшение натяжения капсулы и изменение формы этой оптической линзы глаза. Она становится более выпуклой, за счет чего хорошо видны расположенные вблизи предметы. Когда мышца расслабляется, хрусталик становится плоским, это позволяет видеть расположенные вдали предметы.

Кроме того, хрусталик представляет собой перегородку, разделяющую глаз на два отдела, благодаря чему обеспечивается защита передних отделов глазного яблока от чрезмерного давления стекловидного тела. Также это является преградой на пути микроорганизмов, которые не попадают в стекловидное тело. В этом проявляются защитные функции хрусталика.

Болезни

Причины заболеваний оптической линзы глаза могут быть самыми разнообразными. Это и нарушения ее формирования и развития, и изменение расположения и цвета, которые происходят с возрастом или как результат травм. Встречается и аномальное развитие хрусталика, что влияет на его форму и цвет.

Часто встречается такая патология, как катаракта, или помутнение хрусталика. В зависимости от расположения зоны помутнения существует передняя, слоистая, ядерная, задняя и другие формы заболевания. Катаракта может быть как врожденной, так и приобретенной в течение жизни как результат травм, возрастных изменений и ряда других причин.

Иногда травмы и разрыв нитей, которые обеспечивают правильное положение хрусталика, могут привести к его смещению. При полном разрыве нитей происходит вывих хрусталика, частичный разрыв приводит к подвывиху.

Симптомы поражения хрусталика

С возрастом острота зрения человека снижается, становится намного труднее читать с близкого расстояния. Замедление обмена веществ приводит к изменениям оптических свойств хрусталика, который становится более плотным и менее прозрачным. Глаз человека начинает видеть предметы менее контрастными, изображение нередко теряет цвет. Когда развиваются более выраженные помутнения, острота зрения значительно снижается, возникает катаракта. Расположение помутнения влияет на степень и скорость снижение зрения.

Возрастное помутнение развивается долго, до нескольких лет. Из-за этого ухудшенное зрение на одном глазу может остаться незамеченным длительное время. Но даже в домашних условиях можно определить наличие катаракты. Для этого необходимо взглянуть на чистый лист бумаги одним, затем другим глазом. При наличии заболевания будет казаться, что лист тусклый и имеет желтоватый оттенок. Люди с данной патологией нуждаются в ярком освещении, при котором они могут хорошо видеть.

Помутнение хрусталика может быть вызвано наличием воспалительного процесса (иридоциклит) или длительным приемом лекарственных средств, которые содержат стероидные гормоны. Различные исследования подтвердили, что при глаукоме помутнение оптической линзы глаза происходит быстрее.

Диагностика

Диагностика состоит из проверки остроты зрения и исследования специальным оптическим прибором. Офтальмолог оценивает размер и строение хрусталика, определяет степень его прозрачности, наличие и локализацию помутнений, которые приводят к снижению остроты зрения. При исследовании хрусталика пользуются методом бокового фокального освещения, при котором осматривается передняя его поверхность, находящаяся в пределах зрачка. Если помутнения отсутствуют, хрусталик не виден. Кроме того, существуют и другие методы исследования - осмотр в проходящем свете, исследование при помощи щелевой лампы (биомикроскопия).

Как лечить?

Лечение в основном хирургическое. Аптечные сети предлагают различные капли, но они не способны возвратить прозрачность хрусталика, а также не гарантируют прекращение развития заболевания. Операция является единственной процедурой, которая обеспечивает полное выздоровление. Для удаления катаракты может применяться экстракапсулярная экстракция с наложением швов на роговицу. Существует и другой метод - факоэмульсификация с минимальными самогерметизирующимися разрезами. Метод удаления выбирают в зависимости от плотности помутнений и от того, в каком состоянии находится связочный аппарат. Не менее важным является и опыт врача.

Так как глазной хрусталик играет важную роль в процессе работы системы зрения человека, то различные травмы и нарушения его работы часто приводят к непоправимым последствиям. Малейшие признаки нарушения зрения или дискомфорт в области глаз - это повод для немедленного обращения к врачу, который поставит диагноз и назначит необходимое лечение.

Хрусталик – важный элемент оптической системы глаза, средняя преломляющая способность которого составляет 20-22 диоптрии.
Он располагается в задней камере глаза и имеет в среднем размеры 4-5 мм в толщину и 8-9 мм в высоту. Толщина хрусталика очень медленно, но неуклонно в норме увеличивается с возрастом. Представлен он в форме двояковыпуклой линзы, передняя поверхность которой более плоская, а задняя более выпуклая.
Хрусталик прозрачный, благодаря функции специальных белков кристаллинов, имеет тонкую тоже прозрачную капсулу или хрусталиковый мешок, к которому по окружности прикрепляются волокна цинновых связок цилиарного тела, которые фиксируют его положение и могут менять кривизну его поверхности. Связочный аппарат хрусталика обеспечивает неподвижность его положения точно на зрительной оси, что является необходимым для ясного зрения. Хрусталик состоит из ядра и кортикальных слоев вокруг этого ядра – кортекса. В молодом возрасте имеет довольно мягкую, студенистую консистенцию, поэтому легко поддаётся действию натяжения связок цилиарного тела в процессе аккомодации.
При некоторых врождённых заболеваниях хрусталик может иметь неправильное положение в глазу из-за слабости и несовершенства развития связочного аппарата, а также может иметь врожденные помутнения в ядре или кортексе, которые могут снижать зрение.

Симптомы поражения

С возрастом структура ядра и кортекса хрусталика становится более плотной и хуже реагирует на натяжение связочного аппарата и слабо изменяет кривизну своей поверхности. Поэтому при достижении 40 летнего возраста человеку, всегда хорошо видевшему вдаль, становится труднее читать на близком расстоянии.
Возрастное снижение обмена веществ в организме, а следовательно и снижение его и во внутриглазных структурах, приводит к изменению структуры и оптических свойств хрусталика. Помимо своего уплотнения он начинает терять свою прозрачность. При этом изображение, которое видит человек может становиться желтее, менее ярким в красках, более тусклым. Появляется ощущение, что смотришь «как-бы через целофановую плёнку», которое не проходит даже при использовании очков. При более выраженных помутнениях острота зрения может снижаться значительно вплоть до светоощущения. Это состояние хрусталика называется катарактой.

Катарактальные помутнения могут находиться в ядре хрусталика, в коре, непосредственно под его капсулой и в зависимости от этого будут больше и меньше, быстрее или медленнее снижать остроту зрения. Все возрастные помутнения хрусталика происходят довольно медленно в течение нескольких месяцев или даже лет. Поэтому часто люди долго не замечают, что зрение одного глаза стало хуже. При взгляде на чистый белый лист бумаги одним глазом он может выглядеть более желтоватым и тусклым, чем другим. Могут появляться ореолы при взгляде на источник света. Вы можете заметить, что видите лишь при очень хорошем освещении.
Часто помутнения хрусталика бывают вызваны не возрастным нарушением обмена веществ, а длительными воспалительными заболеваниями глаза, такими как хронический иридоциклит, а также длительным применением таблеток или капель, содержащих стероидные гормоны. Многими исследованиями достоверно подтверждено, что при наличии глаукомы, хрусталик в глазу мутнеет быстрее и чаще.
Тупая травма глаза также может быть причиной прогрессии помутнений в хрусталике и/или нарушения состояния его связочного аппарата.

Диагностика состояния хрусталика

Диагностика состояния и функций хрусталика и его связочного аппарата основывается на проверке остроты зрения и биомикроскопии переднего отрезка. Врач-офтальмолог может за аппаратом оценить размер и строение вашего хрусталика, степень его прозрачности, детально определить наличие и расположение в нём помутнений, снижающих остроту зрения. Для более детального осмотра хрусталика и его связочного аппарата может потребоваться расширение зрачка. Тем более, что при определённом расположении помутнений, после расширения зрачка, зрение может улучшится, так как диафрагма начнет пропускать свет через прозрачные участки хрусталика.

Иногда относительно толстый в диаметре или длинный в высоту хрусталик может так тесно прилегать к радужке или цилиарному телу, что может сужать угол передней камеры глаза, через который происходит основной отток внутриглазной жидкости. Этот механизм является основным в возникновении узкоугольной или закрытоугольной глаукомы. Для оценки взаимоотношения хрусталика с цилиарным телом и радужкой может потребоваться ультразвуковая биомикроскропия или оптическая когерентная томография переднего отрезка.

Лечение заболеваний хрусталика

Лечение заболеваний хрусталика, как правило, хирургическое.
Существует множество капель, призванных остановить возрастное помутнение хрусталика, но они не могут вернуть вам его первоначальную прозрачность или гарантировать прекращение его дальнейшего помутнения. На сегодняшний день операция удаления катаракты – помутневшего хрусталика – с заменой на интраокулярную линзу, является операцией с полным выздоровлением.

Методики удаления катаракты вариабельны: от экстракапсулярной экстракции с наложением швов на роговицу до факоэмульсификации с минимальными самогерметизирующимися разрезами. Выбор метода удаления зависит от степени и плотности помутнений хрусталика, прочности его связочного аппарата, а также, что немаловажно, от квалификации офтальмохирурга.

На современном этапе известно, что хрусталик развивается из эктодермальной плакоды, которая формирует при инвагинации хрусталиковый пузырёк на 3-й неделе эмбриогенеза . По данным некоторых исследователей, плакода инвагинирует вследствие сокращения цитоплазматических нитей, которые имеют диаметр 3,5 - 4,5 нм и располагаются параллельно вершинам клеток.

На начальном этапе развития хрусталика отмечается утолщение эктодермы при контакте с глазным пузырьком - хрусталиковая плакода. На последующих стадиях развития (22-23-й день) клетки хрусталиковой плакоды инвагинируют кзади, образуя вогнутую ямку. Эта инвагинация продолжается и в дальнейшем, а указанная группа клеток, отшнуровываясь от поверхностной эктодермы, превращается в хрусталиковый пузырек. Нежная базальная мембрана, связанная первоначально с поверхностной эктодермой, в этот период покрывает хрусталиковый пузырек, в котором клетки вытянуты вовнутрь. Базальная мембрана, или капсула хрусталика, такая тонкая, что на ранних стадиях развития она не видна при световой микроскопии.

Сохранившаяся над хрусталиковым пузырьком эктодерма смыкается по мере погружения пузырька и в дальнейшем дифференцируется в передний эпителий роговой оболочки. После инвагинации хрусталиковый пузырек отделяется от эктодермы, погружаясь внутрь глазного бокала. После погружения формирующаяся линза приобретает округлую форму. Первоначально деление клеток наблюдается по всему хрусталиковому пузырьку, впоследствии митозы обнаруживаются только в его проксимальной стенке. В это время клетки внутренней стенки прекращают предмитотический синтез ДНК и, соответственно, не поглощают меченый тимидин.

На этой стадии развития выявляются и определенные различия в строении передней и задней стенок хрусталикового пузырька. Передняя стенка остается однослойной и состоящей из кубовидных клеток. Клетки задней стенки постепенно удлиняются и формируют лентовидные волокна. Просвет пузырька уменьшается в объеме и принимает серповидную форму в результате роста волокон. Этот просвет вскоре облитерируется благодаря волокнам, а солидный хрусталик полностью формируется к концу 4-й недели эмбрионального развития.

Капсула хрусталика является истинной базальной мембраной и образуется в результате деятельности эпителиальных клеток. Возникает она на 5-й неделе эмбрионального развития.

В конце 6-й недели клетки задней поверхности пузырька начинают удлиняться, превращаясь в первичные волокна. Основания этих волокон прилежат к задней половине капсулы, образованной по наружной поверхности хрусталикового пузырька его клетками, а вершины быстро достигают эпителиальных клеток передней половины пузырька и к 6,5 неделям вся его полость заполнена ими. Эти волокна представляют собой удлиненные дифференцированные клетки, ядра которых постепенно резорбируются, митохондрии постепенно исчезают. Образуется капсулозрачковая мембрана.

Швы хрусталика начинают формироваться на 2-м месяце эмбрионального развития непосредственно в период образования первичного ядра хрусталика. Во время возникновения первичного ядра хрусталика хрусталиковые волокна распространяются от переднего к заднему полюсу, что и является причиной его сферичности. Дальнейший рост проявляется в неравномерном удлинении хрусталиковых волокон, так что они соединяются у переднего и заднего полюсов с образованием стыка в виде Y-образного шва.

Первоначально существуют два подобных шва - передний и задний. Основная роль швов заключается в том, что именно они позволяют линейно соединяться стыкам волокон. Это предопределяет эллипсоидную форму хрусталика. На поздних стадиях беременности и при рождении рост швов неравномерный. Вместо простого Y-образного шва наблюдается образование сложной дендритической картины.

К 9-й неделе формируется зачаток эмбрионального ядра хрусталика. Уплотнение первичных волокон приводит к уменьшению обьема вещества хрусталика и, как правило, к ослаблению натяжения его капсулы, что компенсируется образованием новых волокон, носящих название вторичных. Тем самым, уже в начале эмбрионального развития хрусталика, в действие приводится механизм его физиологической регенерации, функционирующий затем на протяжении всей жизни. Формирование вторичных волокон начинается на 9- 10-й неделе эмбрионального развития и затем продолжается с постепенно затухающей интенсивностью в течение постнатального онтогенеза, практически прекращаясь только в глубокой старости.

Принято считать, что источником образования этих волокон служат клетки эпителия передней капсулы. В эмбриональном и постэмбриональном периодах развития эти кубические клетки размножаются под всей передней капсулой, но наиболее интенсивно - вблизи экватора. Клетки, расположенные в области экватора хрусталика, перестают размножаться и начинают дифференцироваться, смещаясь своими основаниями по задней капсуле в направлении к заднему полюсу. Одновременно они удлиняются таким образом, что основания формирующихся вторичных клеток - волокон - оказываются у задней капсулы, а верхушки - под ее эпителием у передней. Концы волокон растут по направлению к наружному и внутреннему полюсам хрусталика. Волокна некоторое время сохраняют ядра, расположенные в их средней части, чуть ближе к вершине, и, налагаясь концентрическими слоями на подлежащие им первичные волокна, отодвигают последние внутрь хрусталика. Новые слои дифференцирующихся волокон оттесняют от капсулы ранее образовавшиеся, вследствие чего основания и вершины последних "отрываются " от сумки, формируя в конце 10-й недели соответственно задний и передний хрусталиковые швы, или звезды. Первой появляется задняя звезда хрусталика, а спустя 2 недели - передняя. Эти звезды состоят из цементирующего вещества, находящегося между волокнами хрусталика и располагаются не поверхностно, а проникают до ядра, которым и отделяются друг от друга. Сначала швы имеют по 3-4 плеча, а затем их количество увеличивается. Ядра первичных и вторичных волокон, оказавшихся в глубине хрусталика, постепенно утрачивают ДНК и дегенерируют. Сложившаяся таким образом структура хрусталика не претерпевает принципиальных изменений до конца внутриутробного развития, но вторичное волокнообразование приводит к возрастанию его размеров и массы параллельно росту глазного яблока, увеличивающемуся в этот период в 11-12 раз.

После окончательного формирования эмбрионального ядра дальнейшее образование новых волокон происходит только в экваториальной области. Новые волокна располагаются концентрически вокруг старых волокон вдоль экватора. Именно в этой области видны многочисленные митозы. Рост волокон в области экватора продолжается на протяжении всей жизни человека. При этом хрусталик постоянно увеличивается в размере и массе. Скорость роста с возрастом заметно снижается.

Увеличение массы хрусталика и глаза в целом в пренатальном периоде происходит таким образом, что их доля по отношению к массе плода уменьшается. Так, масса хрусталика на 10-й неделе развития составляет 0,02% массы тела, при рождении - 0,04%, а у взрослого человека - только 0,0006%. Следует отметить, что в эмбриональном периоде вокруг хрусталиковой сумки образуется из окружающей мезенхимы сосудистая оболочка, выполняющая по отношению к нему трофическую функцию. Она получает кровоснабжение через артерию стекловидного тела, а также от веточек зрачковой мембраны и наиболее развита от 2-го до 6-го месяца эмбриогенеза. К моменту рождения она редуцируется. Лишь у 23,3% новорожденных продолжается рассасывание ее остатков.

При сохранности этих временных структур могут быть нарушены зрительные функции, которые требуют хирургической коррекции. Существует мнение, что некоторые виды патологии глаза и хрусталика, в частности, могут быть связаны с включением эмбриональных механизмов развития при эндогенном повреждении их структур.

По мере дифференциации хрусталиковых волокон и смещения их к центральным участкам хрусталика клетки теряют свои ядра, внутрицитоплазматические органоиды, а затем и цитоплазматическую мембрану.
Прогрессивное увеличение количества хрусталиковых волокон в области экватора приводит к появлению зон, характеризующих различные периоды развития хрусталика. Это разделение на зоны является следствием наличия оптических различий между старой, более склеротической зоной центра хрусталика, и новой, более прозрачной зоной. У взрослых обнаруживаются следующие зоны:

  • эмбриональное ядро - прозрачные первичные хрусталиковые волокна, сформированные между 1-м и 3-м месяцами эмбрионального развития;
  • фетальное ядро - вторичные волокна, формирующиеся на 3-8-м месяцах эмбрионального развития;
  • инфантильное ядро - формируется во время последних недель эмбрионального развития до препубертатного периода;
  • ядро взрослых - формируется после окончания препубертатного периода;
  • кора - поверхностные волокна, лежащие под эпителием - спереди и под капсулой - сзади.

Форма и размер хрусталика

Хрусталик представляет собой прозрачное, двояковыпуклое в виде диска полутвердое образование, расположенное между радужкой и стекловидным телом.

  • Хрусталик уникален тем, что он является единственным "органом" тела человека и большинства животных, состоящим из одного типа клеток на всех стадиях эмбрионального развития и постнатальной жизни вплоть до смерти.
  • Существенным отличием его является отсутствие в нем кровеносных сосудов и нервов.
  • Уникален он и по особенностям метаболизма (преобладает анаэробное окисление),
  • химическому составу (наличие специфических белков кристаллинов),
  • отсутствию толерантности организма к его белкам.

Большинство этих особенностей связано с характером его эмбрионального развития.

Передняя и задняя поверхности хрусталика соединяются в так называемой экваториальной области. Экватор хрусталика открывается в заднюю камеру глаза и при помощи ресничного пояска (цинновых связок) присоединен к ресничному эпителию. Благодаря расслаблению ресничного пояска при сокращении ресничной мышцы и происходит деформация хрусталика. При этом выполняется основная его функция - изменение рефракции, позволяющее на сетчатке получить четкое изображение независимо от расстояния до предмета. Для выполнения этой роли хрусталик должен быть прозрачным и эластичным, каковым он и является.

Хрусталик растет непрерывно на протяжении всей жизни человека, утолщаясь примерно на 29 мкм в год. Начиная с 6-7-й недели внутриутробной жизни (18 мм эмбриона) он увеличивается в передне-заднем размере в результате роста первичных хрусталиковых волокон. На стадии развития, когда длина эмбриона достигает 18-26 мм, хрусталик имеет приблизительно сферическую форму. С появлением вторичных волокон (размер эмбриона - 26 мм) хрусталик уплощается и его диаметр увеличивается.

Аппарат ресничного пояска, появляющийся при длине эмбриона 65 мм, не влияет на увеличение диаметра хрусталика. В последующем хрусталик быстро увеличивается в массе и объеме. При рождении он имеет почти сферическую форму.

В первые два десятилетия жизни увеличение толщины хрусталика прекращается, но продолжает увеличиваться его диаметр. Фактором, способствующим увеличению диаметра, является уплотнение ядра. Натяжение ресничного пояска обусловливает изменение формы хрусталика.
Измеренный по экватору диаметр хрусталика взрослого человека равен 9-10 мм. В центре толщина его на момент рождения приблизительно равна 3,5-4 мм, в 40 лет - 4 мм, а к старческому возрасту медленно увеличивается до 4,75-5 мм. Толщина хрусталика зависит от состояния аккомодационной способности глаза.

Возрастные особенности диаметра, массы и объема хрусталика человека
Возраст, лет Сагиттальный диаметр (толщина), мм
Новорожденный 3,5
10 3,9
20-50 4,0-4,14
60-70 4,77
80-90 5,0
Экваториальный диаметр, мм
Новорожденный 6,5
после 15 лет 9,0
Масса, мг
Новорожденный 65
Первый год жизни 130
20-30 174
40-50 204
90 250
Объем, мл
30-40 0,163
80-90 0,244
Толщина капсулы, мкм
Передний полюс 8-14
Экватор 7-17
Задний полюс 2-4
Хрусталиковые волокна, мкм
Длина (мм) 8-12
Толщина (мкм) 4,6
Количество 2100-2300

В отличие от толщины экваториальный диаметр хрусталика с возрастом человека изменяется в меньшей степени. При рождении он равен 6,5 мм, а на 2-ом десятилетии жизни - 9-10 мм, в последующем остается без изменений.

Передняя поверхность хрусталика менее выпуклая, чем задняя. Она представляет собой часть сферы с радиусом кривизны, равным в среднем 10 мм (8-14 мм). Передняя поверхность граничит с передней камерой глаза посредством зрачка, а по периферии - с задней поверхностью радужки. Зрачковый край радужки опирается на переднюю поверхность хрусталика. Боковая поверхность хрусталика обращена в сторону задней камеры глаза и посредством ресничного пояска присоединяется к отросткам ресничного тела.

Центр передней поверхности хрусталика называют передним полюсом. Располагается он примерно на расстоянии 3 мм позади задней поверхности роговой оболочки.

Задняя поверхность хрусталика имеет большую кривизну - радиус кривизны равен 6 мм (4,5-7,5 мм). Её обычно рассматривают в комплексе со стекловидной мембраной передней поверхности стекловидного тела. Тем не менее между этими структурами существует щелеподобное пространство, заполненное жидкостью. Это пространство позади хрусталика было описано ещё Е. Бергером в 1882 г. Его можно наблюдать при передней биомикроскопии.

Экватор хрусталика лежит в пределах ресничных отростков на расстоянии 0,5 мм от них. Экваториальная поверхность неровная. Она имеет многочисленные складки, образование которых связано с тем, что к этой области прикрепляется ресничный поясок. Складки исчезают при аккомодации, то есть в условиях прекращения натяжения связки.

Рефракционный индекс хрусталика равен 1,39, то есть несколько больший, чем рефракционный индекс передней камеры. Именно по этой причине, несмотря на меньший радиус кривизны, оптическая сила хрусталика меньше, чем роговой оболочки. Вклад хрусталика в рефракционную систему глаза равен приблизительно 15 из 40 диоптрий. Аккомодационная сила, равная 15-16 диоптриям при рождении, уменьшается наполовину к 25 годам, а в возрасте 50 лет равна лишь 2 диоптриям.

При биомикроскопическом исследовании хрусталика с расширенным зрачком можно обнаружить особенности его структурной организации. Во-первых, видна его многослойность. Различаются следующие слои, считая спереди к центру:

  • капсула;
  • подкапсулярная светлая зона (кортикальная зона);
  • светлая узкая зона неоднородного рассеивания;
  • полупрозрачная зона коры.

Перечисленные зоны и составляют поверхностную кору хрусталика. Существуют и две более глубоко расположенные зоны коры. Их называют еще перинуклеарными. Эти зоны характеризуются наличием аутофлюоресценции зеленым цветом при освещении хрусталика синим светом.

Ядро рассматривают как пренатальную часть хрусталика. Оно также обладает слоистостью. В центре располагается ясная зона, называемая зародышевым (эмбриональным) ядром. При исследовании хрусталика с помощью щелевой лампы также можно обнаружить швы хрусталика. Зеркальная микроскопия при большой кратности увеличения позволяет увидеть эпителиальные клетки и волокна хрусталика.

Капсула хрусталика

Хрусталик со всех сторон покрыт капсулой. Капсула - это не что иное, как базальная мембрана эпителиальных клеток. Она является самой толстой базальной мембраной тела человека. Спереди капсула толще (до 15,5 мкм), чем сзади. Более выражено утолщение по периферии передней капсулы, поскольку в этом месте прикрепляется основная масса ресничного пояска. С возрастом толщина капсулы увеличивается, особенно спереди. Это связано с тем, что эпителий, являющийся источником базальной мембраны, расположен спереди и участвует в ремодуляции капсулы, отмечаемой по мере роста хрусталика.

Капсула является довольно мощным барьером на пути бактерий и воспалительных клеток, но свободно проходима для молекул, размер которых соизмерим с размером гемоглобина. Хотя капсула не содержит эластических волокон, она исключительно эластична и постоянно находится под действием внешних сил, то есть в растянутом состоянии. По этой причине рассечение или разрыв капсулы сопровождается скручиванием. Свойство эластичности используется при проведении экстракапсулярной экстракции катаракты. Благодаря сокращению капсулы выводится содержимое хрусталика. Это же свойство используется также при YAG- капсулотомии.

В световом микроскопе капсула выглядит прозрачной, гомогенной. В поляризованном свете выявляется ее пластинчатая волокнистая структура. При этом волокнистость располагается параллельно поверхности хрусталика. Капсула также положительно окрашивается при проведении ШИК-реакции, что свидетельствует о наличии в ее составе большого количества протеогликанов.

Ультраструктурно капсула имеет относительно аморфное строение. Незначительная пластинчатость намечается благодаря рассеиванию электронов нитевидными элементами, складывающимися в пластины.
Выявляется около 40 пластин, толщина каждой из которых равна приблизительно 40 нм. При большем увеличении микроскопа выявляются нежные фибриллы диаметром 2,5 нм. Пластины расположены строго параллельно поверхности капсулы.

В постнатальный период отмечается некоторое утолщение задней капсулы, что свидетельствует о возможности секреции базального материала задними кортикальными волокнами.
R. F. Fisher (1969) установил, что 90 % утраты эластичности хрусталика наступает в результате изменения эластичности капсулы. Это предположение подвергнуто сомнению R. A. Weale (1982).

В экваториальной зоне передней капсулы хрусталика с возрастом появляются электронноплотные включения, состоящие из коллагеновых волокон диаметром 15 нм и с периодом поперечной исчерченности, равной 50-60 нм. Предполагается, что они образуются в результате синтетической деятельности эпителиальных клеток. С возрастом появляются и волокна коллагена, периодичность исчерченности которых равна 110 нм.

Места прикрепления ресничного пояска к капсуле названы пластинами Бергера. Другое их название - перикапсулярная мембрана. Это поверхностно расположенный слой капсулы толщиной от 0,6 до 0,9 мкм. Он менее плотный и содержит больше гликозамингликанов, чем остальная часть капсулы. В перикапсулярной мембране обнаруживается фибронектин, витреонектин и другие матричные белки, которые играют определенную роль в прикреплении пояска к капсуле. Волокна этого фиброгранулярного слоя имеют толщину только 1-3 нм, в то время как толщина фибрилл ресничного пояска составляет 10 нм.

Подобно другим базальным мембранам капсула хрусталика богата коллагеном IV типа. Она также содержит I, III и V типы коллагена. Кроме того, в ней обнаруживается и множество других внеклеточных матричных компонентов - ламилин, фибронектин, гепаран сульфат и энтактин.

Проницаемость капсулы хрусталика человека изучалась многими исследователями. Капсула свободно пропускает воду, ионы и другие молекулы небольшого размера. Она является барьером на пути белковых молекул, имеющих размер альбумина (Mr 70 kDa; диаметр молекулы 74 А) и гемоглобина (Mr 66.7 kDa; радиус молекулы 64 А). Различий в пропускной способности капсулы в норме и при катаракте обнаружено не было.

Эпителий хрусталика состоит из одного слоя клеток, лежащих под передней капсулой хрусталика и распространяющихся на экватор. Клетки на поперечных срезах кубовидной формы, а в плоскостных препаратах - полигональной. Количество их приближается к 500 000 в зрелом возрасте. Плотность эпителиоцитов в центральной зоне равна 5009 клеток в 1 мм2 у мужчин и 5781 - у женщин. Плотность увеличивается к периферии хрусталика С возрастом человека плотность клеток снижается.

Аэробное окисление (цикл Кребса) за нимает лишь 3% объема метаболизма всего хрусталика. Причем этот тип дыхания наблюдается только в эпителиальных клетках и наружных хрусталиков волокнах. Тем не менее этот путь окисления обеспечивает до 20 % потребности хрусталика в энергии. Эта энергия используется для обеспечения активных транспортных и синтетических процессов, необходимых для роста хрусталика, синтеза мембран, кристаллинов, белков цитоскелета и нуклеопротеидов.

Функционирует и пентозофосфатный шунт, участвующий в синтезе нуклеопротеидов. Эпителий и поверхностные волокна коры хрусталика участвуют в выведении из него натрия, благодаря деятельности Na+-, К+- насоса. При этом используется энергия АТФ-азы. В задней части хрусталика ионы натрия распространяются пассивно во влагу задней камеры,

В зависимости от особенностей строения и функции выделяют несколько зон эпителиальной выстилки.

  • Центральная зона состоит из относительно постоянного количества клеток, которое медленно уменьшается с возрастом. Они полигональной формы. Ширина клеток - 11-17 мкм, а высота - 5-8 мкм. Своей апикальной поверхностью они прилежат к наиболее поверхностно расположенным хрусталиковым волокнам. Ядра смещены к апикальной поверхности клеток, большого размера и имеют многочисленные ядерные поры. В них, как правило, два ядрышка. Цитоплазма содержит умеренное количество рибосом, полисом, гладкий и шероховатый эндоплазматический ретикулум, маленькие митохондрии. Выражен пластинчатый комплекс (аппарат Гольджи). Обнаруживаются также лизосомы, плотные тела и частицы гликогена. Видны цилиндрической формы микротрубочки диаметром 24 нм, микрофиламенты промежуточного типа (10 нм), филаменты альфа-актинина.
    В цитоплазме эпителиоцитов выявлены так называемые матричные белки - актин, винметин, спектрин, альфа-актинин и миозин. Эти белки обеспечивают жесткость цитоплазмы клетки. В эпителии присутствует также альфа-кристаллин. Бета- и гамма-кристаллины отсутствуют. К капсуле хрусталика клетки присоединяются при помощи полудесмосом. В центрально расположенной зоне редко встречаются митозы. При различных патологических состояниях, в первую очередь после травмы, они более многочисленны.
  • Промежуточная зона находится ближе к периферии хрусталика. Клетки этой зоны цилиндрические с центрально расположенным ядром. Базальная мембрана имеет складчатый вид.
  • Герминативная зона прилежит к преэкваториальной зоне. Она отличается выраженной пролиферативной активностью клеток (66 митозов на 100 000 клеток). Клетки этой зоны по мере деления мигрируют кзади и в последующем превращаются в хрусталиковые волокна. Некоторые из них смещаются и кпереди, в промежуточную зону. Цитоплазма эпителиоцитов содержит малочисленные органоиды. Имеются короткие профили шероховатого эндоплазматического ретикулума, рибосомы, маленькие митохондрии и пластинчастый комплекс. Количество органоидов увеличивается в экваториальной области по мере повышения уровня структурных элементов цитоскелета, актина, винметина, белка микротрубочек, сперктрина, альфа-актинина и миозина. Можно различить целые актиновые сетеподобные структуры, особенно в апикальной и в базальной частях клеток.

Процесс формирования хрусталиковых волокон

После конечного разделения клетки одна или обе дочерние клетки смещаются в смежную переходную зону, в которой они организованы в меридионально ориентированные ряды. В последующем эти клетки дифференцируются во вторичные волокна хрусталика, разворачиваясь на 180° и удлиняясь кпереди и кзади. Новые волокна хрусталика сохраняют полярность таким образом, что задняя (базальная) часть волокна имеет контакт с капсулой (базальной пластинкой), в то время как передняя (апикальная) - отделена от этого эпителием. Эти переходные (транзиторные) формы клеток богаты рибосомами (полисомами), содержат большое количество мультивезикулярных тел. Многочисленны и микротрубочки. По мере дальнейшей дифференциации клетки принимают пирамидальную форму с многочисленными "бугорками", направленными в сторону капсулы.

Предмитотическому состоянию эпителиальных клеток предшествует синтез ДНК в то время как дифференциация клеток в хрусталиковые волокна сопровождается усилением синтеза РНК, поскольку в этой стадии отмечается синтез структурных и мембранных специфических белков. В процессе терминальной дифференциации хрусталиковых волокон ядра пикнотизируются, а затем исчезают. Исчезают и органоиды. Было выявлено, что потеря ядер митохондрий наступает внезапно и в одном поколении клеток. Интенсивность митотических делений уменьшается с возрастом. У молодых крыс в сутки формируется приблизительно пять новых волокон, в то время как у старых - одно.

Ядрышки дифференцирующихся клеток увеличиваются, а цитоплазма становится более базофильной в связи с возрастанием количества рибосом, что объясняется усилением синтеза мембранных компонентов, белков цитоскелета и кристаллинов хрусталика.

Герминативная зона в отличие от центральной защищена радужкой от неблагоприятного воздействия световой энергии, особенно ультрафиолетовой (300-400 нм).

Особенности мембран эпителиальных клеток

За исключением базальной мембраны эпителиальных клеток, которая связывает клетку с капсулой хрусталика, цитоплазматические мембраны соседних эпителиальных клеток формируют определенный комплекс межклеточных связен. Если боковые поверхности клеток слегка волнистые, то апикальные зоны мембран образуют "пальцевые вдавления", погружающиеся в надлежащие хрусталиковые волокна. Базальная часть клеток присоединена к передней капсуле при помощи полудесмосом, а боковые поверхности клеток соединяются десмосомами.

На боковых поверхностях мембран смежных клеток обнаружены щелевые контакты, через которые могут проникать небольшие молекулы. Плотные контакты между эпителиальными клетками хотя и обнаруживаются, но редко. Структурная организация мембран хруста ликовых волокон и характер межклеточных контактов свидетельствуют о возможном наличии на поверхности клеток рецепторов, контролирующих процессы эндоцитоза.

Эндоцитоз, в свою очередь, играет важную роль в перемещении метаболитов между этими клетками. Предполагается существование рецепторов к инсулину, гормону роста и бета-адренергическим антагонистам. На апикальной поверхности эпителиальных клеток выявлены ортогональные частицы, встроенные в мембрану и имеющие диаметр 6-7 нм. Предполагают, что эти образования обеспечивают перемещение между клетками питательных веществ и метаболитов.

Хрусталиковые волокна

Переход от эпителиальных клеток герминативной зоны к хрусталиковому волокну сопровождается исчезновением "пальцевых вдавлений" между клетками и началом удлинения базальной и апикальной частей клетки. По мере постепенного накопления хрусталиковых волокон формируется ядро хрусталика. Это смещение клеток приводит к образованию S- или С-подобной дуги, направленной вперед и состоящей из цепи ядер клеток.

Глубже расположенные волокна хрусталика имеют толщину 150 мкм. Когда они теряют ядра, ядерная дуга исчезает. В области экватора ширина зоны ядерных клеток составляет порядка 300-500 мкм.
Хрусталиковые волокна имеют веретенообразную или ремнеподобную форму, располагаясь по дуге в виде концентрических слоев. На поперечном разрезе в области экватора они гексагональной формы. По мере погружения к центру хрусталика постепенно нарушается их однообразие по размеру и форме. В области экватора у взрослого ширина хрусталикового волокна колеблется от 10 до 12 мкм, а толщина - от 1,5 до 2 мкм.

В задних частях хрусталика волокна более тонкие, что объясняется асимметричной формой хрусталика и большей толщиной передней коры. Концы волокон встречаются в определенном месте и формируют швы.

В фетальном ядре имеется передний вертикально расположенный Y-образный и задний инвертированный Y-образный швы. После рождения к имеющимся швам добавляется множество ответвлений. В результате этого швы приобретают звездоподобный вид. Основное значение швов заключается в том, что, благодаря такой сложной системе контакта между клетками, сохраняется форма хрусталика на протяжении жизни.

Особенности мембран хрусталиковых волокон

Контакты типа "пуговица-петля". Мембраны соседствующих хрусталиковых волокон соединены при помощи разнообразных специализированных образований, изменяющих свое строение по мере смещения волокна с поверхности вглубь хрусталика. В поверхностных 8-10 передних слоях коры волокна соединяются при помощи образований типа "пуговица-петля" ("шар и гнездо"), распределенных равномерно по длине волокна. Подобного типа контакты существуют только между клетками одного слоя, то есть клетками одного поколения, и отсутствуют между клетками разных поколений. Это обеспечивает возможность передвижения волокон относительно друг друга в процессе их роста.

В более глубоко расположенных волокнах контакт типа "пуговица-петля" обнаруживается несколько реже и распределяется вдоль волокна неравномерно и непроизвольно. Видны они и между клетками разных поколений.

В самых глубоких слоях коры и ядра кроме указанных контактов появляются сложные интердигитации в виде гребней, впадин и борозд. Обнаружены также и десмосомы, но только между дифференцирующимися, а не зрелыми хрусталиковыми волокнами.

Предполагают, что контакты между хрусталиковыми волокнами необходимы для поддержания жесткости структуры на протяжении всей жизни, что способствует сохранению прозрачности хрусталика.

Еще один тип межклеточных контактов обнаружен в хрусталике человека. Это щелевой контакт. Предполагают, что такие контакты выполняют две роли.

  • Во-первых, поскольку они соединяют хрусталиковые волокна на большом протяжении, сохраняется архитектоника ткани, тем самым обеспечивается прозрачность хрусталика.
  • Во-вторых, именно благодаря наличию этих контактов происходит распространение питательных веществ между хрусталиковыми волокнами. Это особенно важно для нормального функционирования структур на фоне пониженной метаболической активности клеток (недостаточное количество органоидов).

Выявлено два типа щелевых контактов - кристаллические (с высоким омическим сопротивлением) и некристаллические (с низким). В некоторых тканях (печень) указанные типы щелевидных контактов могут преобразовываться один в другой при изменении ионного состава окружающей среды. В волокне хрусталика они не способны к подобному преобразованию.

  • Первый тип щелевых контактов найден в местах прилегания волокон к эпителиальным клеткам, а второй - только между волокнами
  • Второй тип щелевых контактов (низко-омные) имеют внутримембранные частицы не позволяющие соседним мембранам сближаться более чем на 2 нм. Благодаря этому в глубоких слоях хрусталика уровни ионов и молекул невысокие. Последние достаточно легко распространяются между хрусталиковыми волокнами и их концентрация довольно быстро нормализуется.

Имеются и видовые различия в количестве щелевых контактов. Так, в хрусталике они занимают такую площадь от поверхности волокна: у человека - 5 %, у лягушки - 15 %, у крысы - 30 %, а у цыпленка - 60 %. Щелевых контактов нет в области швов.

Высокая рефракционная способность хрусталика достигается высокой концентрацией белковых филаментов, а прозрачность обеспечивается их строгой организацией, однородностью структуры волокон в пределах каждого поколения и небольшим объемом межклеточного пространства (менее 1% объема хрусталика). Способствует прозрачности и небольшое количество внутрицитоплазматических органоидов, а также отсутствие в хрусталиковых волокнах ядер. Все перечисленные факторы сводят к минимуму рассеивание света между волокнами.

Есть и другие факторы, влияющие на рефракционную способность. Одним из них является повышение концентрации белка по мере приближения к ядру хрусталика. Именно благодаря этому отсутствует хроматическая аберрация. Не меньшее значение в структурной целостности и прозрачности хрусталика имеет и регуляция ионного содержания и степени гидратации волокон.

При рождении хрусталик прозрачен. С возрастом по мере его роста ядро приобретает желтоватый оттенок, что, вероятно, связано с влиянием на него ультрафиолетового излучения (длина волны 315-400 нм). При этом в коре появляются флюоресцирующие пигменты. Предполагают, что эти пигменты экранируют сетчатку от разрушительного действия коротковолновой световой энергии. Пигменты накапливаются в ядре с возрастом, а у некоторых лиц участвуют в образовании пигментной катаракты. В старческом возрасте и, особенно, при ядерной катаракте в ядре хрусталика увеличивается количество нерастворимых белков, которые представляют собой кристаллины со "сшитыми молекулами".

Метаболическая активность в центральных участках хрусталика незначительна. Отсутствует метаболизм белков. Именно поэтому они относятся к долгоживущим белкам и легко подвергаются повреждению окислителями, которые приводят к конформации белковой молекулы и образуют сульфгидрильные группы. Развитие катаракты характеризуется увеличением зон рассеивания света. Это может быть вызвано нарушением регулярности расположения хрусталиковых волокон, изменением структуры мембран и рассеиванием, связанным с преобразованием белковых молекул. Отек хрусталиковых волокон и их разрушение приводят к нарушению водно-солевого обмена.

Аппарат ресничного пояска

Зонулярный аппарат хрусталика состоит из волокон, распространяющихся от ресничного тела к экватору хрусталика. Они достаточно жестко фиксируют хрусталик в определенном положении и позволяют ресничной мышце выполнять свою основную функцию, а именно путем сокращений приводить к деформации хрусталика. При этом, естественно, изменяется его рефракционная способность. Ресничный поясок образует кольцо, имеющее вид треугольника на меридиональном срезе. Основание этого треугольника вогнуто и противостоит экватору хрусталика, верхушка направляется к отросткам ресничного тела, его плоской части и зубчатой линии.

Волокна аппарата ресничного пояска состоят из гликопротеида неколлагенового происхождения, связанного при помощи О- и N-связей с олигосахаридами. Наличие этих связей объясняет их положительное гистохимическое окрашивание при проведении ШИК-реакции.

Волокна аппарата ресничного пояска имеют трубчатое строение и напоминают эластические волокна как химическим составом, так и отношением к протеолитическим ферментам (устойчивость к коллагеназе и трипсину). Эту особенность использовали при интракапсулярной экстракции катаракты, применяя альфа-хемотрипсин, лизирующий аппарат ресничного пояска, но не действующий на капсулу хрусталика.
Недавно установлено, что фибриллы аппарата ресничного пояска богаты цистеином и аналогичны микрофибриллярному компоненту эластической ткани. Эти волокна называются фибриллином и окрашиваются соответствующими моноклональными антителами. В других тканях фибриллин является матрицей для образования эластических волокон. Фибриллин в отличие от окситалана (микрофибриллярный компонент эластической ткани) никогда не превращается в эластические волокна.

Ген, контролирующий синтез фибриллина, располагается в хромосоме 15q21.1. Синдром Марфана, при котором выявляются дислокация хрусталика и различные заболевания сердечно-сосудистой системы, связан с мутаций гена, контролирующего синтез фибриллина.

Как указано выше, ресничный поясок состоит из волокон диаметром 10 нм (от 8 до 12 нм), имеющих строение трубочки на поперечном срезе. В тех случаях, когда филаменты складываются в пучок, появляется периодичность в 40-55 мкм. Между волокнами обнаруживается мелкозернистый и волокнистый материал.
Аппарат ресничного пояска исходит из наружного слоя капсулы хрусталика в экваториальной области. Причем спереди связки прикрепляются к капсуле на протяжении 2,5 мм, а сзади - на протяжении 1 мм. При этом фибриллы, исходящие из переднего отдела экваториальной поверхности хрусталика, направляются кзади и прикрепляются к ресничным отросткам (передние связки), а фибриллы, отходящие от задней поверхности капсулы, направляются к плоской части ресничного тела и зубчатой линии (задние связки).

Экваториальные связки распространяются от ресничных отростков непосредственно к экватору. Выделяют и гиалоидные связки, которые распространяются от плоской части ресничного тела к краю хрусталика в месте его прилегания к стекловидному телу. Здесь они вплетаются в "гиалоидокапсулярные связки" (соответствующие аннулярным волокнам связки Вегенера).

В связи с тем, что связки от хрусталика направляются в различные отделы ресничного тела, между ними образуются потенциальные пространства. Это каналы Hanover (между условно передними и задними выделенными связками) и канал Петита (между задними связками и передней поверхностью стекловидного тела). Использование сканирующей электронной микроскопии способствовало большему пониманию особенностей строения связок и прикрепления их к хрусталику.

Подавляющее большинство волокон исходит из плоской части ресничного тела кпереди на расстоянии 1,5 мм от зубчатой линии. Здесь они переплетаются с внутренней пограничной мембраной эпителиальных клеток или с волокнами переднего отдела стекловидного тела. Большинство волокон складывается в пучки, состоящие из 2-5 фибрилл. Некоторые фибриллы иногда проникают между эпителиальными клетками. Фибриллы обнаруживаются и между пигментированными эпителиальными клетками ресничного эпителия и вплетаются в их базальную мембрану и мембрану Бруха.

Передние связки распространяются пока не достигнут заднего края отростчатой части. Здесь они образуют зонулярное сплетение, которое находится между ресничными отростками, и прикрепляются к их боковым стенкам. Фибриллы зонулярного сплетения плотно присоединяются в основании ресничных гребешков, стабилизируя всю систему связок. Несколько кпереди отростчатой части ресничного тела зонулярное сплетение разделяется на три пучка волокон, направляющихся к передней, экваториальной и задней капсуле хрусталика.

Характер преэкваториального, экваториального и заэкваториального прикрепления ресничного пояска разный.

  • Преэкваториальные связки относительно плотные. Они все прикрепляются на одном и том же расстоянии от экватора (1,5 мм) в виде двойного ряда связок шириной 5-10 мкм. Связки при прикреплении суживаются и расплющиваются в плоскости капсулы хрусталика, формируя при этом ресничные пластинки. Передние связки в месте прикрепления отдают в капсулу тонкие фибриллы (от 0,07 до 0,5 мкм) на глубину 0,6-1,6 мкм. Ресничная пластинка утолщается от 1 до 1,7 мкм. Указывается на то, что число передних связок уменьшается с возрастом. При этом вставки передних связок смещаются к центру капсулы.
  • Экваториальных волокон меньше. Они так же, как передние и задние, щеткоподобно расщепляются при прикреплении к капсуле. Фибриллы обычно шириной от 10 до 15 мкм, но могут достигать и 60 мкм. Задние волокна прикрепляются двумя или тремя слоями в зоне шириной от 0,4 до 0,5 мм. Спереди они прикрепляются к заднему краю экватора хрусталика, сзади простираются приблизительно до 1,25 мм от края экватора. Волокна ресничного пояска погружаются в капсулу хрусталика примерно на 2 мкм.
  • Постэкваториальные волокна , на первый взгляд, кажутся менее развитыми, чем передние. Это мнение ошибочно, поскольку они прикрепляются к капсуле на разных уровнях, включая вплетение в волокна передней поверхности стекловидного тела. Стекловидные связки являются отдельным слоем волокон, которые соединяют передний отдел стекловидного тела с плоской и отростчатой частями ресничного тела.

Streeten предполагает, что слизеподобный характер ресничного пояска является барьером на пути распространения веществ между задней камерой глаза и стекловидным телом.

Возрастные изменения ресничного пояска

В эмбриональный период его волокна более нежные и в меньшей степени соединены между собой. Они также содержат больше протеогликанов. В пожилом возрасте количество волокон уменьшается, особенно меридиональных, и они легче разрываются. В первые два десятилетия жизни вставки ресничного пояска в капсуле хрусталика довольно узкие. Со временем они расширяются и подвигаются к центру капсулы хрусталика. При этом свободная от связок поверхность передней капсулы хрусталика уменьшается с 8 мм в возрасте 20 лет до 6,5 мм на 8-м десятилетии жизни. Иногда она сокращается до 5,5 мм, что существенно усложняет проведение капсулотомии при экстракапсулярной экстракции катаракты.

При интракапсулярной экстракции катаракты большая часть связочного комплекса отрывается от капсулы. Сохраняются лишь кончики передних зонулярных вставок и некоторое количество меридиональных волокон. Ресничный поясок ослаблен при псевдоэксфолиации капсулы хрусталика, что может явиться причиной разрыва ее во время удаления катаракты.

Зрение — один из способов познания мира. Способность видеть во многом контролирует хрусталик глаза, который имея незамысловатое строение, несет в себе важные функции. Быстро перефокусироваться с близко расположенного предмета на дальний позволяет именно он.

Строение глаза можно сравнить с оптической системой фотоаппарата. И если аналогом фотопленки здесь выступает сетчатка, то вместо профессиональной системы линз — роговица и хрусталик.

Когда свет попадает в глаз, сначала на своем пути встречает роговицу и проходит через нее. Она имеет куполообразную форму и характеризуется полным отсутствием кровеносных сосудов. Выйдя из нее, свет попадает в так называемую переднюю камеру глаза. Только после этого этапа наступает черед хрусталика.

Строение «глазной линзы»

Хрусталик — это линза, которая преломляет свет. Ее оптическая сила равна 18 — 20 диоптриям, что сравнительно меньше, чем у роговицы. По всей окружности имеются связочки, похожие на узелки из ниточек, которые соединяются с мышцами стенок глаза.

Эти мышцы имеют способность сокращаться и расслабляться, из — за этого кривизна хрусталика меняется и человек может видеть вблизи и вдали.

Строение хрусталика чем-то напоминает виноградину, имеющая одну косточку. В нем имеется капсульный мешок (или попросту оболочка), ядро (имеющее высокую плотность) и хрусталиковы массы (плотность намного ниже, чем у ядра), которые сравниваются с виноградной мякотью. С возрастом у человека ядро становится все более плотным, что мешает хорошо видеть вблизи.

Вокруг ядра располагается цилиарное тело, которое является продолжением сосудов. У него есть отросточки, которые вырабатывают жидкость внутри глаза. Они через зрачок проникают в , а затем в венозную систему .

Какие функции берет на себя хрусталик

Как уже было сказано выше, данной линзе отводится существенная роль в функционировании зрения, поэтому все функции хрусталика важны:

  1. обеспечивает проход света к сетчатке, что напрямую зависит от прозрачности линзы;
  2. принимает участие в преломлении потока света;
  3. приводит в действие приспособленческий механизм, позволяющий видеть то вблизи, то вдали;
  4. «работает» перегородкой, разделяющей глаз на два отдела разного размера.

Болезни хрусталика

Эта важная часть глаза так же, как и весь организм в целом, подвержена различным заболеваниям. Они могут быть вызваны разными причинами (отклонения в развитии, изменение цвета или расположения и т.д.). Бывают случае, когда глазу наносится травма, что несет в себе угрозу разрыва нитей вязки, которая требует неотложного лечения.

Существует болезнь, которая требует замены линзы на искусственную — это катаракта. При этом заболевании хрусталик мутнеет и человек перестает четко видеть предметы. Причина катаракты могут быть разными, но чаще всего в этом виноваты возрастные изменения. Строение хрусталика позволяет сменить его на искусственный, не задевая остальные части глаза, что гарантирует минимальные риски при операции.

Как хрусталик заменяется на искусственный

Каждый человек испытывает страх при слове «операция». Однако, смена хрусталика длится примерно 15 минут и проводится под местным наркозом. Сразу после нее пациента сутки наблюдают в стационаре, а потом отпускают домой, где можно смотреть телевизор и читать газету. Единственное ограничение — в течение двух недель не разрешается носить тяжести весом более двух килограмм.

После закапывания обезболивающих капель (это и есть местная анестезия), глаз фиксируется расширителем. Хирург — офтальмолог через разрез на роговице удаляет мутный хрусталик и на ее место ставит искусственный. Операция довольна сложная и требует ювелирной работы, но все же считается безопасной, так как линза не контактирует с остальными частями глаза.

Резюмируя о хрусталике

Он состоит из клеток эпителия, не имеет сосудов. В течение всей жизни наблюдаются преобразования его формы, размера и прозрачности. Такое изменение хрусталика, которое ведет к его помутнению и ухудшению зрения, называется катарактой и лечится хирургическим путем.

Функции хрусталика сравниваются с оптической линзой в фотоаппарате и позволяют нам хорошо видеть предметы на разных расстояниях. В юном возрасте линза более мягка и эластична, что позволяет хорошо видеть. С возрастом она становится все плотнее, что может привести к развитию катаракты. Чтобы обезопасить себя глазных заболеваний, раз в полгода посещайте окулиста в профилактических целях.