Какие факторы способствуют росту и развитию бактерий в различных средах. В чем заключается особенность роста и размножения бактериальных клеток

Рост и размножение бактерий

Рост бактерий происходит в результате множества взаимосвязанных биохимических реакций, осуществляющих синтез клеточного материала, что приводит к увеличению количества всех химических компонентов. У бактерий различают индивидуальный рост бактериальной клетки и рост бактерий в популяции.

Индивидуальный рост бактерий . О нем судят по увеличению размеров отдельных особей. Скорость роста зависит от внешних условий и физиологического состояния самой клетки. При постоянных условиях рост осуществляется с постоянной скоростью. Палочковидные бактерии растут преимущественно в направлении длинной оси, поэтому соотношение между поверхностью клетки и ее объемом при росте клеток существенно не изменяется, и это создает постоянные условия снабжения каждой части клетки питательными веществами и кислородом. Кокки растут равномерно во всех направлениях, увеличивая размеры радиуса клетки, при этом относительная величина поверхности клетки падает, поэтому условия снабжения каждой части клетки становятся все более неблагоприятными. В промежутках между клеточными делениями бактерии имеют большие размеры, чем сразу после деления.

Размножение бактерий. Наиболее часто бактерии размножаются путем бинарного деления, когда из одной клетки образуется две, каждая из которых вновь делится. Процессу деления всегда предшествует репликация ДНК. Существует два типа деления – деление перетяжкой (перешнуровывание) и с помощью поперечной перегородки (рисунок 1.9).

Рисунок 1.9 – Деление бактерий

А - деление перетяжкой; Б - деление поперечной перегородкой; КС – клеточная стенка; ЦМ – цитоплазматическая мембрана; Н – нуклеоид; П – перетяжка

Деление перетяжкой (констрикция) сопровождается сужением клетки в месте ее деления, и в этом процессе принимают участие все слои клеточных оболочек. Выпячивание оболочек с обеих сторон внутрь клетки все более ее сужает и, наконец, делит на две. Так делятся многие грамотрицательным бактериям.

Деление с образованием поперечной перегородки присуще грамположительным бактериям. Однако у некоторых групп бактерий отмечена смена способов деления (тионовые бактерии, микобактерии). У шаровидных бактерий может образовываться несколько поперечных перегородок (тетракокки, сарцины).

Период от деления до деления называется клеточным циклом (онтогенез бактерий). Различают несколько типов вегетативного клеточного цикла: мономорфный – образуется только один морфологический тип клеток (например, бациллы), диморфный – два морфологических типа, полиморфный – несколько, каждый из которых характеризуется определенными и постоянными особенностями клеточного цикла (например, актиномицеты). При диморфном и полиморфном циклах различают дочерние и материнские клетки.

Почкование убактерий является разновидностью бинарного деления. Этот способ размножения присущ бактериям, имеющим диморфные или полиморфные клеточные циклы. Почкующимся бактериям присуща полярность клеток. Некоторые бактерии размножаются с помощью экзоспор (но не эндоспор!), фрагментами гиф (актиномицеты). Есть бактерии, у которых имеются половые ворсинки, или F-пили (англ. fertility –фертильность, плодовитость), обусловленные наличием полового фактора.

Бактерии характеризуются высокой скоростью размножения. Например, при благоприятных условиях кишечная палочка делится каждые 20…30 мин, за сутки из одной клетки проучится 2 72 (72 поколения). В условиях, исключающих гибель, такая биомасса составит 4720 т. Скорость размножения зависит от факторов внешней среды (температура, условия питания, влажность, реакция среды и др.) и от видовых особенностей бактерий. Высокая скорость размножения бактерий обеспечивает их сохранение на Земле даже в условиях массовой гибели. Сохранившиеся отдельные клетки размножаются и вновь дают поколение.

Рост бактерий в популяции. Популяция (фр. population – население) – это совокупность бактерий одного вида (чистая культура) или разных видов (смешанная ассоциация), развивающихся в ограниченном пространстве (например, в питательной среде). В бактериальной популяции постоянно происходит рост, размножение и отмирание клеток. Культивирование микроорганизмов в искусственных условиях бывает периодическим, непрерывным и синхронным.

Периодическое (стационарное) культивирование . Это культивирование происходит без притока и оттока питательной среды. Оно характеризуется классической кривой роста микроорганизмов, в которой выделяют отдельные фазы роста бактериальной популяции, отражающие общую закономерность роста и размножения клеток (рисунок 1.10).

Рисунок 1.10 – Кривая роста и развития бактериальной популяции

Лаг-фаза (англ. lag – отставание) начинается с момента посева бактерий в свежую питательную среду. Клетки адаптируются к данным условиям культивирования, растут, но не размножаются, они достигают максимальной скорости роста. Абсолютная и удельная скорость роста увеличиваются от нуля до максимально возможных значений.

Абсолютная скорость роста определяется отношением:

V = dx/dt, (1.1)

где V – прирост биомассы или числа клеток;.

х – биомасса или число клеток,

t – время.

Удельная скорость роста определяется по формуле:

µ = (dx/dt) ∙ 1/х, (1.2)

где µ - прирост биомассы е единицу времени на единицу биомассы,

х – начальная биомасса.

Продолжительность лаг-фазы зависит от биологических особенностей бактерий, возраста культуры, количества посевного материала, состава питательной среды, температуры, аэрации, рН и др. Одни бактерии обладают коротким периодом задержки роста, другие длинным. Чем моложе культура, тем период короче. Чем состав питательной среды ближе к тому, в котором выращивали микроорганизмы, тем короче лаг-фаза. Изменения в питательной среде приводят к изменению лаг-фазы, так как необходимо время для синтеза ферментов, либо повышения их активности. Таким образом, факторы задержки роста можно разделить на внешние (состав среды, рН, температура и др.) и внутренние (возраст культуры). Длительность фазы моет быть от нескольких минут до нескольких часов и даже дней. В этой фазе μ = 0.

Логарифмическая , или экспоненциальная , или лог-фаза , характеризуется максимальной скоростью деления бактерий. Экспоненциальный рост популяции описывается уравнением:

Х = Х о ∙ е μ max ∙ t , (1.3)

где Хи Х о - количество клеток (или биомасса) в конце и в начале опыта;

t– время опыта;

е– основание натурального логарифма;

μ max максимальная удельная скорость роста.

В период логарифмической фазы большинство клеток является физиологически молодыми, биохимически активными, а также наиболее чувствительными к неблагоприятным факторам внешней среды. В этой фазе μ = max.Эта фаза многостадийна, так как в начале ее бактерии растут в среде с избытком субстрата, затем концентрация его понижается, изменяется активность ферментов, возрастает содержание клеточных метаболитов. Кроме того, на рост бактерий оказывают влияние многие факторы: видовые особенности бактерий, характер питательной среды и концентрация ее отдельных компонентов, температура культивирования.

Фаза замедленного роста . Она объединяет две фазы – фазу линейного роста (μ = const) и фазу отрицательного ускорения . Фаза характеризуется в период линейного роста постоянной скоростью прироста биомассы (числа клеток). Затем при переходе в фазу отрицательного ускорения численность делящихся клеток уменьшается. Наступление фазы объясняется количественными изменениями состава питательной среды (потребление питательных веществ, накопление продуктов метаболизма).

Стационарная фаза характеризуется равновесием между погибающими и вновь образующимися клетками. Факторы, лимитирующие рост бактерий в предыдущей фазе, являются причиной возникновения стационарной фазы. Прироста биомассы нет (μ = 0).В этой фазе наблюдается максимальная величина биомассы и максимальная суммарная численность клеток. Эти максимальные величины называются урожаем , или выходом . Одним из ограничивающих факторов является максимальная концентрация клеток в единице объема питательной среды. У разных видов бактерий эта величина значительно варьирует. В стационарной фазе клетки характеризуются несбалансированным ростом (клеточные компоненты синтезируются с различной скоростью), уменьшением интенсивности обменных процессов, более высокой устойчивостью к физическим и химическим воздействиям.

Фаза отмирания (экспоненциальной гибели клеток ) характеризуется уменьшением числа живых клеток, возрастанием гетерогенности популяции (появляются клетки, не воспринимающие краситель, со слабым развитием муреинового слоя и др.). Процесс отмирания превалирует над делением (μ < 0).

Фаза выживания характеризуется наличием отдельных клеток, сохранивших в течение длительного времени жизнеспособность в условиях гибели большинства клеток популяции. Выжившие клетки характеризуются низкой активностью процессов метаболизма, изменением ультраструктуры клеток (мелкозернистая цитоплазма, отсутствие полирибосом и др.). Клетки более устойчивы к неблагоприятным условиям среды.

Таким образом, при стационарном культивировании микробные клетки все время находятся в изменяющихся условиях: сначала имеются в избытке все питательные вещества, затем постепенно наступает их недостаток, затем отравление клеток продуктами метаболизма.

Влияние лимитирующих факторов на скорость роста . Для нормального роста и развития микроорганизмов среда должна содержать необходимые элементы питания, иметь соответствующую рН, температуру и т.д. Факторы, ограничивающие рост культуры, называются лимитирующими . Характерная особенность роста популяции микроорганизмов – зависимость удельной скорости роста от концентрации субстрата. Эта зависимость выражается уравнением Моно , представляющим собой гиперболическую функцию:

μ = μ max ∙ S/(S + K S), (1.4)

где μ – удельная скорость роста;

μ max - максимальная удельная скорость роста;

S – концентрация субстрата;

K S - константанасыщения, численно равная такой концентрации субстрата, которая обеспечивает скорость роста, соответствующую половине значенияμ max .

По мере потребления питательных веществ среда обогащается продуктами обмена, которые также лимитируют рост культуры. Наиболее общий случай влияния концентрации субстрата и продуктов обмена на скорость роста популяции микроорганизмов нашел отражение в модели Н.Д.Иерусалимского:

μ = μ max ∙ S/(S + K S) ∙ К Р / (К Р / + Р), (1.5)

где Р – концентрация продуктов обмена;

К Р - константа, численно равная такой концентрации продуктов обмена, при которой скорость роста замедляется вдвое.

Анализ этого уравнения показывает, что при условии К Р >> Р, когда величиной Р можно пренебречь. скорость роста ограничена только концентрацией субстрата. Если S >> K S , то скорость роста лимитирована накоплением продуктов обмена

Непрерывное культивирование. Если в емкость, где находится бактериальная популяция, непрерывно подавать свежую питательную среду и одновременно с такой же скоростью выводить культуральную жидкость, содержащую бактериальные клетки и продукты метаболизма, то получается непрерывное культивирование. Регулируя скорость проточной среды, можно управлять ростом бактериальной популяции, например, удлинять логарифмическую или стационарную фазу на любое необходимое время. Непрерывное культивирование осуществляется в специальных приборах - хемостатах и турбидостатах.

Хемостаты . Рост бактерий регулируется концентрацией субстрата. Поддерживая постоянную концентрацию одного из необходимых субстратов (источник азота или углерода), путем регулирования скорости протока среды, можно сбалансировать скорость роста культуры. Скорость изменения величины биомассы клеток в хемостате равна разности между скоростью прироста биомассы и скоростью выноса ее из культиватора. Плотность популяции остается постоянной, если μ=D (удельная скорость роста равна коэффициенту разбавления), т.е. потеря клеток в результате вымывания и прирост их в результате размножения уравновешивается.

Турбидостаты .Принцип работы основан на регулировании скорости потока среды плотностью популяции. Плотность популяции контролируется фотоэлементом, соединенным с реле, регулирующим подачу среды. Когда плотность популяции достигает заданного уровня, реле срабатывает и в культиватор поступает свежая среде. В результате концентрация клеток уменьшается до определенного уровня и затем автоматически отключается подача среды.

Турбидостатный контроль может быть основан на других метолах определения биомассы, либо продуктов, образующихся в процессе роста бактерий (например, рН-статный способ управления скорости потока, использование оксистата– управление скоростью потока по скорости потребления кислорода и др.).

Непрерывное культивирование микроорганизмов используется для изучения их физиологии, биохимии, генетики и др., а также широко используется в микробиологической промышленности.

Синхронное культивирование. Синхронные культуры – это культуры, в которых некоторое время все клетки делятся одновременно (синхронно) за счет одинаковой готовности к делению всех особей. Синхронизация достигается физическими и химико-биологическими методами. Физические методы - это температурное воздействие, дифференциальное центрифугирование или дифференциальное фильтрование и др. Химико-биологические методы: вынужденное голодание бактерий, выращивание бактерий на неполноценных средах с последующим переносом их в полноценные среды. Синхронные культуры используются для генетических и цитологических исследований, для изучения синтеза отдельных клеточных компонентов в процессе деления бактерий.

Вперед >>>

1. Рост и размножение бактерий

Рост бактерий – увеличение бактериальной клетки в размерах без увеличения числа особей в популяции.

Размножение бактерий – процесс, обеспечивающий увеличение числа особей в популяции. Бактерии характеризуются высокой скоростью размножения.

Рост всегда предшествует размножению. Бактерии размножаются поперечным бинарным делением, при котором из одной материнской клетки образуются две одинаковые дочерние.

Процесс деления бактериальной клетки начинается с репликации хромосомной ДНК. В точке прикрепления хромосомы к цитоплазматической мембране (точке-репликаторе) действует белок-инициатор, который вызывает разрыв кольца хромосомы , и далее идет деспирализация ее нитей. Нити раскручиваются, и вторая нить прикрепляется к цитоплазматической мембране в точке-прорепликаторе, которая диаметрально противоположна точке-репликатору. За счет ДНК-полимераз по матрице каждой нити достраивается точная ее копия. Удвоение генетического материала – сигнал для удвоения числа органелл. В септальных мезосомах идет построение перегородки, делящей клетку пополам.

Двухнитевая ДНК спирализуется, скручивается в кольцо в точке прикрепления к цитоплазматической мембране. Это является сигналом для расхождения клеток по септе. Образуются две дочерние особи.

На плотных питательных средах бактерии образуют скопления клеток – колонии, различные по размерам, форме, поверхности, окраске и т. д. На жидких средах рост бактерий характеризуется образованием пленки на поверхности питательной среды, равномерного помутнения или осадка.

Размножение бактерий определяется временем генерации. Это период, в течение которого осуществляется деление клетки . Продолжительность генерации зависит от вида бактерий, возраста, состава питательной среды, температуры и др.

Фазы размножение бактериальной клетки на жидкой питательной среде:

1) начальная стационарная фаза; то количество бактерий, которое попало в питательную среду и в ней находится;

2) лаг-фаза (фаза покоя); продолжительность – 3–4 ч, происходит адаптация бактерий к питательной среде, начинается активный рост клеток, но активного размножения еще нет; в это время увеличивается количество белка, РНК;

3) фаза логарифмического размножения; активно идут процессы размножения клеток в популяции, размножение преобладает над гибелью;

4) максимальная стационарная фаза; бактерии достигают максимальной концентрации, т. е. максимального количества жизнеспособных особей в популяции; количество погибших бактерий равно количеству образующихся; дальнейшего увеличения числа особей не происходит;

5) фаза ускоренной гибели; процессы гибели преобладают над процессом размножения, так как истощаются питательные субстраты в среде. Накапливаются токсические продукты, продукты метаболизма. Этой фазы можно избежать, если использовать метод проточного культивирования: из питательной среды постоянно удаляются продукты метаболизма и восполняются питательные вещества.

<<< Назад
Вперед >>>

Размножение бактерий путем деления — самый распространенный метод увеличения численности микробной популяции. После деления происходит рост бактерий до исходного размера, для чего необходимы определенные вещества (факторы роста).

Способы размножения бактерий различны, но для большинства их видов присуща форма бесполового размножения способом деления. Способом почкования бактерии размножаются исключительно редко. Половое размножение бактерий присутствует в примитивной форме.

Рис. 1. На фото бактериальная клетка в стадии деления.

Генетический аппарат бактерий

Генетический аппарат бактерий представлен единственной ДНК — хромосомой. ДНК замкнута в кольцо. Хромосома локализована в нуклеотиде, не имеющем мембраны. В бактериальной клетке имеются плазмиды.

Нуклеоид

Нуклеоид является аналогом ядра. Он расположен в центре клетки. В нем локализована ДНК — носитель наследственной информации в свернутом виде. Раскрученная ДНК достигает в длину 1 мм. Ядерное вещество бактериальной клетки не имеет мембраны, ядрышка и набора хромосом, не делится митозом. Перед делением нуклеотид удваивается. Во время деления число нуклеотидов увеличивается до 4-х.

Рис. 2. На фото бактериальная клетка на срезе. В центральной части виден нуклеотид.

Плазмиды

Плазмиды представляют собой автономные молекулы свернутые в кольцо двунитевой ДНК. Их масса значительно меньше массы нуклеотида. Несмотря на то, что в ДНК плазмид закодирована наследственная информация, они не являются жизненно важными и необходимыми для бактериальной клетки.

Рис. 3. На фото бактериальная плазмида.

Этапы деления

После достижения определенных размеров, присущих взрослой клетке, запускаются механизмы деления.

Репликация ДНК

Репликация ДНК предшествует клеточному делению. Мезосомы (складки цитоплазматической мембраны) удерживают ДНК до тех пор, пока процесс деления (репликации) не завершится.

Репликация ДНК осуществляется с помощью ферментов ДНК-полимеразами. При репликации водородные связи в 2-х спиральной ДНК разрываются, в результате чего из одной ДНК образуются две дочерние односпиральные. В последующем, когда дочерние ДНК заняли свое место в разделенных дочерних клетках, происходит их восстановление.

Как только репликация ДНК завершилась, в результате синтеза появляется перетяжка, разделяющая клетку пополам. Вначале делению подвергается нуклеотид, затем цитоплазма. Синтез клеточной стенки завершает деление.

Рис. 4. Схема деления бактериальной клетки.

Обмен участками ДНК

У сенной палочки процесс репликации ДНК завершается обменом участками 2-х ДНК.

После деления клетки образуется перемычка, по которой ДНК одной клетки переходит в другую. Далее обе ДНК сплетаются. Некоторые отрезки обоих ДНК слипаются. В местах слипания происходит обмен отрезками ДНК. Одна из ДНК по перемычке уходит обратно в первую клетку.

Рис. 5. Вариант обмена ДНК у сенной палочки.

Типы делений бактериальных клеток

Если клеточное деление опережает процесс разделения, то образуются многоклеточные палочки и кокки.

При синхронном клеточном делении образуются две полноценные дочерние клетки.

Если нуклеотид делится быстрее самой клетки, то образуются многонуклеотидные бактерии.

Способы разделения бактерий

Деление с помощью разламывания

Деление с помощью разламывания характерно для сибиреязвенных бацилл. В результате такого деления клетки переламываются в местах сочленения, разрывая цитоплазматические мостики. Далее отталкиваются друг от друга, образуя цепочки.

Скользящее разделение

При скользящем разделении после деления клетка обосабливается и как бы скользит по поверхности другой клетки. Данный способ разделения характерен для некоторых форм эшерихий.

Секущееся разделение

При секущемся разделении одна из разделившихся клеток свободным концом описывает дугу круга, центром которого является точка ее контакта с другой клеткой, образуя римскую пятерку или клинопись (коринебактерии дифтерии, листерии).

Рис. 6. На фото бактерии палочковидной формы, образующие цепочки (сибиреязвенные палочки).

Рис. 7. На фото скользящий способ разделения кишечных палочек.

Рис. 8. Секущийся способ разделения коринебактерий.

Вид скоплений бактерий после деления

Скопления делящихся клеток имеют разнообразную форму, которая зависит от направления плоскости деления.

Шаровидные бактерии располагаются по одному, по двое (диплококки), пакетами, цепочками или как гроздья винограда. Палочковидные бактерии — цепочками.

Спиралевидные бактерии — хаотично.

Рис. 9. На фото микрококки. Они круглые, гладкие, имеют белую, желтую и красную окраску. В природе микрококки распространены повсеместно. Живут в разных полостях человеческого организма.

Рис. 10. На фото бактерии диплококки — Streptococcus pneumoniae.

Рис. 11. На фото бактерии сарцины. Кокковидные бактерии соединяются в пакеты.

Рис. 12. На фото бактерии стрептококки (от греческого «стрептос» — цепочка). Располагаются цепочками. Являются возбудителями целого ряда заболеваний.

Рис. 13. На фото бактерии «золотистые» стафилококки. Располагаются, как «гроздья винограда». Скопления имеют золотистую окраску. Являются возбудителями целого ряда заболеваний.

Рис. 14. На фото извитые бактерии лептоспиры — возбудители многих заболеваний.

Рис. 15. На фото палочковидные бактерии рода Vibrio.

Скорость деления бактерий

Скорость деления бактерий крайне высока. В среднем одна бактериальная клетка делится каждые 20 минут. В течение только одних суток одна клетка образует 72 поколения потомства. Микобактерии туберкулеза делятся медленно. Весь процесс деления занимает у них около 14 часов.

Рис. 16. На фото отображен процесс деления клетки стрептококка.

Половое размножение бактерий

В 1946 году учеными было обнаружено половое размножение в примитивной форме. При этом гаметы (мужские и женские половые клетки) не образуются, однако некоторые клетки обмениваются генетическим материалом (генетическая рекомбинация ).

Передача генов осуществляется в результате конъюгации — однонаправленного переноса части генетической информации в виде плазмид при контакте бактериальных клеток.

Плазмиды представляют собой молекулы ДНК небольшого размера. Они не связаны с геномом хромосом и способны удваиваться автономно. В плазмидах содержаться гены, которые повышают устойчивость бактериальных клеток к неблагоприятным условиям внешней среды. Бактерии часто передают эти гены друг другу. Отмечается так же передача генной информации бактериям другого вида.

При отсутствии истинного полового процесса именно конъюгация играет огромную роль при обмене полезными признаками. Так передается способность бактерий проявлять лекарственную устойчивость. Для человечества особо опасным является передача устойчивости к антибиотикам между болезнетворными популяциями.

Рис. 17. На фото момент конъюгации двух кишечных палочек.

Фазы развития бактериальной популяции

При посевах на питательную среду развитие бактериальной популяции проходит несколько фаз.

Исходная фаза

Исходная фаза — это период от момента посева до их роста. В среднем исходная фаза длится 1 — 2 часа.

Фаза задержки размножения

Это фаза интенсивного роста бактерий. Ее длительность составляет около 2-х часов. Она зависит от возраста культуры, периода приспособления, качества питательной среды и др.

Логарифмическая фаза

В эту фазу отмечается пик скорости размножения и увеличения бактериальной популяции. Ее длительность составляет 5 — 6 часов.

Фаза отрицательного ускорения

В эту фазу отмечается спад скорости размножения, уменьшается количество делящихся и увеличивается число погибших бактерий. Причина отрицательного ускорения — истощение питательной среды. Ее длительность составляет около 2-х часов.

Стационарная фаза максимума

В стационарную фазу отмечается равное количество погибших и вновь образованных особей. Ее длительность составляет около 2-х часов.

Фаза ускорения гибели

В эту фазу прогрессивно нарастает количество погибших клеток. Ее длительность составляет около 3-х часов.

Фаза логарифмической гибели

В эту фазу клетки бактерий отмирают с постоянной скоростью. Ее длительность составляет около 5-и часов.

Фаза уменьшения скорости отмирания

В эту фазу оставшиеся живыми клетки бактерий переходят в состояние покоя.

Рис. 18. На рисунке отображена кривая роста бактериальной популяции.

Рис. 19. На фото колонии синегнойной палочки сине-зеленого цвета, колонии микрококков желтого цвета, колонии Bacterium prodigiosum кроваво-красного цвета и колонии Bacteroides niger черного цвета.

Рис. 20. На фото колонии бактерий. Каждая колония — потомство одной-единственной клетки. В колонии число клеток исчисляется миллионами. вырастает колония за 1 — 3 суток.

Деление магниточувствительных бактерий

В 1970-х годах были открыты бактерии, обитающие в морях, которые обладали чувством магнетизма. Магнетизм позволяет этим удивительным существам ориентироваться по линиям магнитного поля Земли и находить серу, кислород и другие, так необходимые ей вещества. Их «компас» представлен магнитосомами, которые состоят из магнита. При делении магниточувствительные бактерии делят свой компас. При этом перетяжки при делении становится явно недостаточно, поэтому бактериальная клетка сгибается и делает резкий перелом.

Рис. 21. На фото момент деления магниточувствительной бактерии.

Рост бактерий

Вначале деления бактериальной клетки две молекулы ДНК расходятся в разные концы клетки. Далее клетка делится на две равноценные части, которые отделяются друг от друга и увеличиваются до исходного размера. Скорость деления многих бактерий составляет в среднем 20 — 30 минут. В течение только одних суток одна клетка образует 72 поколения потомства.

Масса клеток в процессе роста и развития быстро поглощает питательные вещества из окружающей среды. Этому способствуют благоприятные факторы внешней среды — температурный режим, достаточное количество питательных веществ, необходимая pH среды. Для клеток аэробов необходим кислород. Для анаэробов он представляет опасность. Однако безграничное размножение бактерий в природе не происходит. Солнечный свет, сухой воздух, недостаток пищи, высокая температура окружающей среды и другие факторы губительно действуют на бактериальную клетку.

Рис. 22. На фото момент деления клетки.

Факторы роста

Для роста бактерий необходимы определенные вещества (факторы роста), часть из которых синтезируется самой клеткой, часть поступает из окружающей среды. Потребность в факторах роста у всех бактерий разная.

Потребность в факторах роста является постоянным признаком, что позволяет использовать его для идентификации бактерий, подготовке питательных сред и использовать в биотехнологии.

Факторы роста бактерий (бактериальные витамины) — химические элементы, большинством из которых являются водорастворимые витамины группы В. В эту группу входят так же гемин, холин, пуриновые и пиримидиновые основания и другие аминокислоты. При отсутствии факторов роста наступает бактериостаз.

Бактерии используют факторы роста в минимальных количествах и в неизменном виде. Ряд химических веществ этой группы входят в состав клеточных ферментов.

Рис. 23. На фото момент деления палочковидной бактерии.

Важнейшие бактериальные факторы роста

  • Витамин В1 (тиамин) . Принимает участие в углеводном обмене.
  • Витамин В2» (рибофлавин) . Принимает участие в окислительно-восстановительных реакциях.
  • Пантотеновая кислота является составной частью кофермента А.
  • Витамин В6 (пиридоксин) . Принимает участие в обмене аминокислот.
  • Витамины В12 (кобаламины — вещества, содержащие кобальт). Принимают активное участие в синтезе нуклеотидов.
  • Фолиевая кислота . Некоторые ее производные входят в состав ферментов, катализирующих процессы синтеза пуриновых и пиримидиновых оснований, а также некоторых аминокислот.
  • Биотин . Участвует в азотистом обмене, а также катализирует синтез ненасыщенных жирных кислот.
  • Витамин РР (никотиновая кислота). Участвует в окислительно-восстановительных реакциях, образовании ферментов и обмене липидов и углеводов.
  • Витамин Н (парааминобензойная кислота). Является фактором роста многих бактерий, в том числе населяющих кишечник человека. Из парааминобензойной кислоты синтезируется фолиевая кислота.
  • Гемин . Является составной частью некоторых ферментов, которые принимают участие в реакциях окислениях.
  • Холин . Принимает участие в реакциях синтеза липидов клеточной стенки. Является поставщиком метильной группы при синтезе аминокислот.
  • Пуриновые и пиримидиновые основания (аденин, гуанин, ксантин, гипоксантин, цитозин, тимин и урацил). Вещества необходимы главным образом в качестве компонентов нуклеиновых кислот.
  • Аминокислоты . Эти вещества являются составляющими белков клетки.

Потребность в факторах роста некоторых бактерий

Ауксотрофы для обеспечения жизнедеятельности нуждаются в поступлении химических веществ из вне. Например, клостридии не способны синтезировать лецитин и тирозин. Стафилококки нуждаются в поступлении лецитина и аргинина. Стрептококки нуждаются в поступлении жирных кислот — компонентов фосфолипидов. Коринебактерии и шигеллы нуждаются в поступлении никотиновой кислоты. Золотистые стафилококки, пневмококки и бруцеллы нуждаются в поступлении витамина В1. Стрептококки и бациллы столбняка — в пантотеновой кислоте.

Прототрофы самостоятельно синтезируют необходимые вещества.

Рис. 24. Разные условия окружающей среды по-разному влияют на рост колоний бактерий. Слева — стабильный рост в виде медленно расширяющегося круга. Справа — быстрый рост в виде «побегов».

Изучение потребности бактерий в факторах роста позволяет ученым получать большую микробную массу, так необходимую при изготовлении антимикробных препаратов, сывороток и вакцин.

Подробно о бактерияx читай в статьях:

Размножение бактерий является механизмом повышения числа микробной популяции. Деление бактерий — основной способ размножения. После деления бактерии должны достигнуть размеров взрослых особей. Рост бактерий происходит путем быстрого поглощения питательных веществ их окружающей среды. Для роста необходимы определенные вещества (факторы роста), часть из которых синтезирует сама бактериальная клетка, часть поступает из окружающей среды.

Изучая рост и размножение бактерий, ученые постоянно открывают полезные свойства микроорганизмов, использование которых в повседневной жизни и на производстве ограничивается только их свойствами.

Микробиология: конспект лекций Ткаченко Ксения Викторовна

1. Рост и размножение бактерий

Рост бактерий – увеличение бактериальной клетки в размерах без увеличения числа особей в популяции.

Размножение бактерий – процесс, обеспечивающий увеличение числа особей в популяции. Бактерии характеризуются высокой скоростью размножения.

Рост всегда предшествует размножению. Бактерии размножаются поперечным бинарным делением, при котором из одной материнской клетки образуются две одинаковые дочерние.

Процесс деления бактериальной клетки начинается с репликации хромосомной ДНК. В точке прикрепления хромосомы к цитоплазматической мембране (точке-репликаторе) действует белок-инициатор, который вызывает разрыв кольца хромосомы, и далее идет деспирализация ее нитей. Нити раскручиваются, и вторая нить прикрепляется к цитоплазматической мембране в точке-прорепликаторе, которая диаметрально противоположна точке-репликатору. За счет ДНК-полимераз по матрице каждой нити достраивается точная ее копия. Удвоение генетического материала – сигнал для удвоения числа органелл. В септальных мезосомах идет построение перегородки, делящей клетку пополам.

Двухнитевая ДНК спирализуется, скручивается в кольцо в точке прикрепления к цитоплазматической мембране. Это является сигналом для расхождения клеток по септе. Образуются две дочерние особи.

На плотных питательных средах бактерии образуют скопления клеток – колонии, различные по размерам, форме, поверхности, окраске и т. д. На жидких средах рост бактерий характеризуется образованием пленки на поверхности питательной среды, равномерного помутнения или осадка.

Размножение бактерий определяется временем генерации. Это период, в течение которого осуществляется деление клетки. Продолжительность генерации зависит от вида бактерий, возраста, состава питательной среды, температуры и др.

Фазы размножение бактериальной клетки на жидкой питательной среде:

1) начальная стационарная фаза; то количество бактерий, которое попало в питательную среду и в ней находится;

2) лаг-фаза (фаза покоя); продолжительность – 3–4 ч, происходит адаптация бактерий к питательной среде, начинается активный рост клеток, но активного размножения еще нет; в это время увеличивается количество белка, РНК;

3) фаза логарифмического размножения; активно идут процессы размножения клеток в популяции, размножение преобладает над гибелью;

4) максимальная стационарная фаза; бактерии достигают максимальной концентрации, т. е. максимального количества жизнеспособных особей в популяции; количество погибших бактерий равно количеству образующихся; дальнейшего увеличения числа особей не происходит;

5) фаза ускоренной гибели; процессы гибели преобладают над процессом размножения, так как истощаются питательные субстраты в среде. Накапливаются токсические продукты, продукты метаболизма. Этой фазы можно избежать, если использовать метод проточного культивирования: из питательной среды постоянно удаляются продукты метаболизма и восполняются питательные вещества.

Из книги Рассказ о жизни рыб автора Правдин Иван Федорович

Возраст и рост рыб Не зная быстроты роста и продолжительности жизни деревьев, нельзя вести лесное хозяйство; не зная возраста и роста домашних животных, невозможно правильно заниматься скотоводством. Лесовод давно научился определять возраст деревьев по годичным

Из книги Гидропоника для любителей автора Зальцер Эрнст Х

Почему может прекратиться рост растений Если это случится, то сразу же следует вспомнить о "законе минимума". Что же под этим подразумевается?Позволим себе здесь небольшое отступление и мысленно представим прогулку семьи с маленькими и более взрослыми детьми. Семья

Из книги Микробиология: конспект лекций автора Ткаченко Ксения Викторовна

2. Питание бактерий Под питанием понимают процессы поступления и выведения питательных веществ в клетку и из клетки. Питание в первую очередь обеспечивает размножение и метаболизм клетки.Среди необходимых питательных веществ выделяют органогены – это восемь

Из книги Микробиология автора Ткаченко Ксения Викторовна

2. Изменчивость у бактерий Различают два вида изменчивости – фенотипическую и генотипическую.Фенотипическая изменчивость – модификации – не затрагивает генотип. Модификации затрагивают большинство особей в популяции. Они не передаются по наследству и с течением

Из книги Семена разрушения. Тайная подоплека генетических манипуляций автора Энгдаль Уильям Фредерик

6. Рост, размножение, питание бактерий Рост бактерий – увеличение бактериальной клетки в размерах без увеличения числа особей в популяции.Размножение бактерий – процесс, обеспечивающий увеличение числа особей в популяции. Бактерии характеризуются высокой скоростью

Из книги Муравей, семья, колония автора Захаров Анатолий Александрович

Рост населения и государственная безопасность В апреле 1974 года, по мере того, как мировая засуха и американская сельскохозяйственная политика набирали обороты, госсекретарь кабинета Никсона и советник по государственной безопасности Генри Киссинджер разослал некий

Из книги Возрастная анатомия и физиология автора Антонова Ольга Александровна

РОСТ СЕМЬИ И СОВЕРШЕНСТВОВАНИЕ ЕЕ ОРГАНИЗАЦИИ Структура в известной мере является как бы результирующей различных аспектов жизни, характеристик семьи муравьев. В структуре находят достаточно полное выражение состав общины и ее численность, видовые особенности

Из книги Экология автора Митчелл Пол

РОСТ ПРИСПОСОБИТЕЛЬНЫХ ВОЗМОЖНОСТЕЙ СЕМЬИ Большие размеры семьи сами по себе - это важное новое свойство. (Примерно в той же степени, как и размеры отдельного индивида). Многочисленная семья всегда более конкурентоспособна, ей легче отстоять свой кормовой участок от

Из книги Бегство от одиночества автора Панов Евгений Николаевич

3.3. Рост и работа мышц

Из книги Путешествие в страну микробов автора Бетина Владимир

3.6. Рост позвоночника. Позвоночник взрослого и ребенка Позвоночник составляют 24 свободных позвонка (7 шейных, 12 грудных и 5 поясничных) и 9-10 несвободных (5 крестцовых и 4–5 копчиковых). Свободные позвонки, сочленяемые между собой, соединены связками, между которыми находятся

Из книги Микрокосм автора Циммер Карл

РОСТ ПОПУЛЯЦИИ В каком-то из изданий было сказано, что если бы человеческая популяция продолжала расти с нынешней скоростью, то через 200 лет огромная масса людей устремилась бы в космос со скоростью света. Этого, конечно, не произойдет; это всего лишь шутка, показывающая,

Из книги Гены и развитие организма автора Нейфах Александр Александрович

«Рост за пределы особи» Итак, перед нашими глазами прошли главные персонажи эффектного эволюционного спектакля, который вывел на сцену жизни множество совершенно удивительных существ. При всех тех различиях, которые придают бесспорное своеобразие каждой обширной

Из книги автора

Рост и размножение микроорганизмов Как сказал известный французский физиолог XIX века Клод Бернар, жизнь есть творение. Живые организмы отличаются от неживой природы главным образом тем, что растут и размножаются. Их рост и размножение лучше всего наблюдать у таких

Из книги автора

Микробы ускоряют рост растений В различных органах растений образуются вещества, регулирующие и до известной степени ускоряющие их рост. К таким веществам относится, например, f3-индолилуксусная кислота (гетероауксин).Интересно, что гетероауксин вырабатывают и выделяют

Из книги автора

«Роскошный рост» Escherichia coli обитала в организме наших предков на протяжении миллионов лет еще тогда, когда предки эти вовсе не были людьми. Но только в 1885 г. вид Homo sapiens и его жильцы были официально представлены друг другу. Немецкий педиатр по имени Теодор Эшерих занимался

Из книги автора

1. Размножение - это рост, наследственность и развитие Размножение - одно из самых специфических и самых сложных свойств жизни. Это и естественно, так как в эволюции отбор идет именно на эту способность: в борьбе за существование побеждают те организмы, которые

Для того чтобы изучать микроорганизмы, определять этиологические факторы инфекционных заболеваний, заниматься вопросами профилактики и лечения инфекционных заболеваний и решать многие другие вопросы, связанные с микроорганизмами, необходимо иметь их в достаточном количестве, а это значит - создавать все условия для нормального роста и размножения микроорганизмов.

Под термином «размножение» микробов подразумевается способность их к самовоспроизведению, увеличению количества особей.

Размножение микроорганизмов происходит путем поперечного деления, почкованием, образования спор, репродукции.

Рост микроорганизмов означает увеличение массы микробов в результате синтеза клеточного материала и воспроизведения всех клеточных компонентов и структур.

О бактериях, спирохетах, актиномицетах, грибах, риккетсиях, микоплазмах, простейших, хламидиях говорят, что они размножаются, а вирусы и фаги (вирусы микробов) – репродуцируются.

Размножение микроорганизмов соответствует определенным закономерностям. Скорость деления микроорганизмов различна, она зависит от вида микроба, возраста культуры, особенностей естественной и искусственной питательной среды, температуры, концентрации углекислого газа и многих других факторов.

В процессе размножения микроорганизмы на различных этапах претерпевают морфологические и физиологические изменения (по форме, размерам, окрашиваемости, биохимической активности, чувствительности к физическим и химическим факторам и пр.).

Микроорганизмы обладают возрастной изменчивостью, т.е. особи изменяются на разных стадиях роста, созревания и старения. Эти изменения наблюдаются в нормальном цикле индивидуального развития микроорганизма, который зависит от природы организма, от сложности его строения и последовательности в развитии.

Наиболее простым циклом развития среди микроорганизмов обладают бактерии. Размножаются они простым поперечным делением в различных плоскостях. В зависимости от этого клетки могут располагаться беспорядочно, гроздями, цепочками, пакетами, попарно, по четыре и т.д.

Характерной чертой бактерий, отличающей их от многочисленных животных и растений, является их необыкновенная скорость размножения.

Каждая бактериальная клетка в среднем в течение получаса претерпевает деление, что обусловлено усиленным обменом веществ, скоростью, с которой питательный материал поступает внутрь клетки.

Фактором, тормозящим размножение бактерий, является истощение питательного субстрата и отравление окружающей среды продуктами распада.

У бактерий различают восемь основных фаз размножения.

1. Исходная стационарная фаза, которая представляет собой период времени один – два часа от момента посева бактерий на питательную среду. В этой фазе размножение не происходит

2. Фаза задержки размножения (лаг – фаза), в течение которой размножение бактерий происходит очень медленно, а скорость их роста увеличивается. Продолжительность второй фазы около двух часов.

3. Фаза длится пять – шесть часов. Третья фаза характеризуется максимальной скоростью деления, уменьшением размеров клеток.

4. Фаза отрицательного ускорения (продолжается около двух часов). Скорость размножения бактерий снижается, число делящихся клеток уменьшается.

5. Стационарная фаза, длящаяся около двух часов. Число новых бактерий почти равно числу отмерших особей.

6. Фаза ускорения гибели клеток (длится около трех часов).

7. Фаза логарифмической гибели клеток (длится около пяти часов), при которой гибель клеток происходит с постоянной скоростью

8. Фаза уменьшения скорости отмирания. Оставшиеся в живых особи, переходят в состояние покоя.

Продолжительность фаз размножения не является постоянной величиной. Она может быть различной в зависимости от вида микроорганизмов и условий культивирования.

Цикл развития кокковидных бактерий сводится к росту клетки и последующему ее делению. Палочковидные аспорогенные бактерии в молодом возрасте растут, достигают максимума величины, затем делятся на две дочерние клетки, которые повторяют тот же цикл. У бацилл и клостридий в цикл развития включается при определенных условиях процесс спорообразования.

Спирохеты и риккетсии, как и бактерии, размножаются путем бинарного деления.

Среди микоплазм способностью размножаться обладают все элементарные тела сферической или овоидной формы. В процессе развития на элементарном теле появляется несколько нитевидных выростов, в которых формируются сферические тела. Постепенно нити становятся тоньше и образуются цепочки с четко выраженными сферическими тельцами. Затем происходит деление нитей на фрагменты и освобождение сферических телец.

Размножение некоторых микоплазм происходит путем отпочкования дочерних клеток от более крупных шаровидных тел. Поперечным делением микоплазмы размножаются, если процессы деления микоплазм идут синхронно с репликацией ДНК нуклеоида. При нарушении синхронности образуются нитевидные многонуклеоидные формы, в последующем делящиеся на кокковидные клетки.

Актиномицеты и грибы имеют две различные стадии развития: стадию вегетативного роста, при которой характерным является образования мицелия и стадию образования спор, формирующихся на спороносцах.

Важной особенностью актиномицетов и грибов является значительное разнообразие способов их размножения. Для них характерны вегетативное, бесполое и половое размножение.

Вегетативное размножение осуществляется путем деления на фрагменты гиф с последующим образованием отдельных палочковидныхи кокковидных клеток.

Бесполое размножение происходит вегетативным путем (рост фрагментов гиф или их отдельных клеток) и при помощи более или менее специализированных органов размножения (спор и конидий). Наиболее частый, бесполый, путь размножения проявляется в образовании экзогенных и эндогенных спор. Экзоспоры или конидии образуются на концах плодоносящих гиф, но заключены внутри общего мешочка – спорангия. Гифы, несущие спорангии, называются спорангионосцами. Спорангионосцы могут быть прямыми, волнистыми, спиральными.

Половое размножение происходит при помощи специальных органов – аскоспор, базидиоспор, образованию которых предшествует половой процесс. По биологическому назначению споры актиномицетов и грибов бывают покоящиеся, служащие для сохранения вида в течение определенного периода и служащие для быстрого размножения.

Споры актиномицетов и грибов образуются каждой особью в большом количестве, так как в отличие от спор бактерий служат, в основном, целям размножения. Они менее устойчивы к факторам окружающей среды, чем споры бактерий.

У простейших, так же как у актиномицетов и грибов, наряду с размножением путем деления существует и половой процесс.

Хламидии, вирусы и фаги имеют своеобразные циклы развития.

Размножение хламидий начинается с проникновения элементарных телец в чувствительную тканевую клетку путем эндоцитоза. Эти тельца в вакуоле клетки превращаются в вегетативные формы, называемые инициальными или ретикулярными тельцами, которые обладают способностью делиться. Ретикулярные тельца имеют пластинную клеточную стенку, а в цитоплазме – рыхло расположенные ядерные фибриллы и многочисленные рибосомы. После многократного деления ретикулярные тельца превращаются в промежуточные формы, из которых развивается новое поколение элементарных телец. Весь цикл развития хламидий длится 40 – 48 часов и заканчивается формированием микроколонии хламидий в цитоплазме клетки – хозяина.

После разрыва стенки вакуоли и полного разрушения клетки – хозяина, микроколонии хламидий, оказавшись за пределами целой клетки, распадается на самостоятельные элементарные тельца, и цикл проникновения хламидий в клетку с последующим их размножением повторяется.

Репродукция вирусов характеризуется последовательностью отдельных стадий.

1. Стадия адсорбции. Вирионы адсорбируются на поверхностных структурах клетки. При этом происходит взаимодействие комплементарных структур вириона и клетки, которые называются рецепторами.

2. Стадия проникновения вириона в клетку хозяина. Пути внедрения вирусов в чувствительные к ним клетки неодинаковы. Многие вирионы проникают в клетку путем пиноцитоза, когда образующаяся пиноцитарная вакуоль «втягивает» вирион внутрь клетки. Некоторые вирусы проникают в клетку прямым путем через ее оболочку.

3. Стадия разрушения внешней оболочки и капсида вириона при помощи протеолитических ферментов клетки – хозяина. У одних вирионов процесс разрушения их оболочки начинается еще на стадии адсорбции, у других – в пиноцитарной вакуоле, у третьих – непосредственно в цитоплазме клетки при участии тех же протеолитических ферментов.

4. Стадия синтеза вирусных белков и репликации нуклеиновых кислот. После полного или частичного освобождения вирусной нуклеиновой кислоты начинается процесс синтеза вирусных белков и репликация нуклеиновых кислот.

5. Стадия сборки или морфогенез вириона. Формирование вирионов возможно только при условии строго упорядоченного соединения вирусных структурных полипептидов и их нуклеиновой кислоты, что обеспечивается самосборкой белковых молекул вокруг нуклеиновой кислоты. У одних вирусов этот процесс происходит в цитоплазме, у других – в ядре клетки хозяина. У сложноорганизованных вирусов, имеющих внешнюю оболочку, дальнейшая сборка происходит в цитоплазме во время выхода их из клетки.

6. Стадия выхода вирионов из клетки – хозяина. Ряд сложных вирусов выходят из клетки – хозяина, при этом клетки в течение некоторого времени сохраняют жизнеспособность, а потом погибают. Простые вирионы выходят из клетки через образовавшиеся в ее оболочке отверстия, клетка – хозяин погибает, не сохраняя в течение какого – то времени жизнеспособность.

В некоторых случаях репродукция вирионов в клетках может происходить в течение многих месяцев и даже лет. Вирусы выделяются через клеточную оболочку. При делении таких клеток вирионы передаются дочерним клеткам, в свою очередь начинающим продуцировать вирусные частицы.

Существует три типа взаимодействия вируса с клеткой: продуктивный, абортивный и вирогенный.

Продуктивный тип взаимодействия заключается в образовании новых вирионов.

Абортивный тип взаимодействия может внезапно прерваться в стадии репликации вирусной нуклеиновой кислоты или синтеза вирусных белков, или морфогенеза вирионов.

Вирогенный тип характеризуется встраиванием (интеграцией) вирусной нуклеиновой кислоты в ДНК клетки, которая обеспечивает синхронность репликации вирусной и клеточной ДНК.

При репродукции фага также происходит адсорбция его на поверхности клетки (1 стадия) в результате взаимодействия аминогрупп белков, локализованных в периферической части хвостового отростка фага, и отрицательно заряженных карбоксильных групп на поверхности бактериальной клетки.

Различают обратимые и необратимые фазы адсорбции. Обратимая фаза характеризуется тем, что фиксированные фаги можно отделить от клетки путем энергичного помешивания или резко уменьшить концентрацию ионов. Освободившиеся фаги при сохраняют свою жизнеспособность.

В период второй необратимой фазы адсорбции фаг не отделяется от тела микробной клетки. Процесс адсорбции длится несколько минут. Под влиянием фермента, находящегося в хвостовом отростке фага, в теле микробной клетки на месте прикрепления фага образуется отверстие, через которое внутрь клетки проникает ДНК фага. Оболочка фага остается снаружи (2 стадия).

Некоторые фаги вводят свою нуклеиновую кислоту в клетку без предварительного механического повреждения клеточной стенки. В наступивший после проникновения в клетку нуклеиновой кислоты фага латентный период, осуществляется биосинтез фаговой нуклеиновой кислоты и белков капсида фага.

Происходит синтез ферментов, необходимых для репликации фаговой нуклеиновой кислоты и структурных белков фага (3 стадия).

В четвертой стадии происходит заполнение фаговой нуклеокислотой пустотелых фаговых частиц и формирование зрелых фагов. Осуществляется морфогенез фага.

В конце латентного периода происходит лизис зараженных микробных клеток и выход зрелых фаговых частиц (5 стадия).

Считают, что адсорбция фага длится 40 минут, латентный период – 75 минут. Весь цикл взаимодействия фага с микробной клеткой продолжается немногим больше трех часов.

Внедрение фага в микробную клетку не всегда сопровождается ее лизисом. Нередко взаимодействие фага с микробной клеткой ведет к образованию лизогенных культур.

По характеру взаимодействия с микробной клеткой различают умеренные и вирулентные фаги. Состояние лизогении вызывается умеренными фагами. Лизогенные микробные клетки являются устойчивыми к вирулентным фагам. Вирулентные фаги обуславливают формирование новых фагов и лизис микробной клетки.