Гликоген для набора массы и сжигания жира. Гликогены. Что это такое? Давайте узнаем! Какая связь животных 1 гликоген

Гликоген - это накапливаемый в мышцах и печени резерв углеводов, который может быть использован по мере метаболической потребности. По своей структуре гликоген представляет сотни связанных между собой молекул глюкозы, поэтому он считается . Вещество иногда называют «животным крахмалом», поскольку по структуре оно похоже на обычный крахмал.

Напомним, что хранение глюкозы в чистом виде неприемлемо для метаболизма - ее высокое содержание в клетках создает высоко гипертоническую среду, приводя к притоку воды и развитию . Напротив, гликоген не растворим в воде и исключает нежелательные реакции¹. Синтезируется вещество в печени (именно там перерабатываются углеводы), а накапливается в мышцах.

В случае, если уровень глюкозы в крови снижается (например, по прошествии нескольких часов после принятия пищи или при активных физических нагрузках), тело начинает вырабатывать специальные ферменты. В результате этого процесса чего накопленный в мышцах гликоген начинает расщепляться до молекул глюкозы, становясь источником быстрой энергии.

Гликоген и гликемический индекс еды

Употребленные в пищу углеводы в процессе пищеварения расщепляются до глюкозы, после чего она поступает в кровь. Отметим, что жиры и белки конвертироваться в глюкозу (и в гликоген) не могут. Вышеупомянутая глюкоза используется телом как для текущих энергетических нужд (например, при физических тренировках), так и для создания резервных запасов энергии - то есть, жировых запасов.

При этом качество переработки углеводов в гликоген напрямую зависит от пищи. Несмотря на то, что простые углеводы максимально быстро повышают уровень глюкозы в крови, значительная их часть конвертируется в жир. В противоположность этому, энергия сложных углеводов, получаемся организмом постепенно, более полно конвертируется в гликоген, содержащийся в мышцах.

В организме гликоген накапливается преимущественно в печени (порядка 100-120 г) и в мышечной ткани (от 200 до 600 г)¹. Считается, что примерно 1% от общего веса мышц приходится именно на него. Отметим, что величина мышечной массы напрямую связана с содержанием в организме гликогена - неспортивный человек может иметь запасы в 200-300 г, тогда как мускулистый спортсмен - до 600 г.

Также нужно упомянуть, что запасы гликогена в печени используются для покрытия энергетических потребностей в глюкозе по всему телу, тогда как запасы гликогена в мышцах доступны исключительно для локального потребления. Другими словами, если вы выполняете приседания, то тело способно использовать гликоген исключительно из мышц ног, а не из мышц бицепса или трицепса.

Функции гликогена в мышцах

С точки зрения биологии, гликоген накапливается не в самих мышечных волокнах, а в саркоплазме - окружающей их питательной жидкости. Фитсевен уже писал о том, что во многом связан с увеличением объема именно этой питательной жидкости - мышцы по своей структуре похожи на губку, которая впитывает саркоплазму и увеличивается в размере.

Регулярные силовые тренировки положительно влияют на размер гликогеновых депо и количество саркоплазмы, делая мышцы визуально более большими и объемными. При этом число мышечных волокон задается прежде всего и практически не меняется в течение жизни человека вне зависимости от тренировок - меняется лишь способность организма накапливать больше гликогена.

Гликоген в печени

Печень - это главный фильтрующий орган организма. В том числе, он перерабатывает поступающие с пищей углеводы - однако за раз печень способна переработать не более 100 г глюкозы. В случае хронического избытка быстрых углеводов в питании, эта цифра повышается. В результате клетки печени могут превращать сахар в жирные кислоты. В этом случае исключается стадия гликогена, и начинается жировое перерождение печени.

Влияние гликогена на мышцы: биохимия

Успешная тренировка для набора мускулатуры требует двух условий - во-первых, наличия достаточного содержания запасов гликогена в мышцах до тренировки, а, во-вторых, успешное восстановление гликогеновых депо по ее окончанию. Выполняя силовые упражнения без запасов гликогена в надежде «просушиться», вы прежде всего вынуждаете тело сжигать мышцы.

Для роста мышц важно не столько употребление белка, сколько наличие в рационе существенного количества углеводов. В особенности, достаточное потребление углеводов сразу по окончанию тренировки в период “ ” - это нужно для восполнения запасов гликогена и остановки катаболических процессов. В противоположность этому, на безуглеводной диете нарастить мышцы нельзя.

Как повысить запасы гликогена?

Запасы гликогена в мышцах пополняются либо углеводами из продуктов питания, либо употреблением спортивного гейнера (смеси протеина и углеводов в виде ). Как мы уже упоминали выше, в процессе пищеварения сложные углеводы расщепляются до простых; сперва они попадают в кровь в виде глюкозы, а затем переработаются организмом до гликогена.

Чем ниже гликемический индекс конкретного углевода, тем медленнее он отдает свою энергию в кровь и тем выше его процент конвертации именно в гликогеновые депо, а не в подкожную жировую клетчатку. Особенную важность это правило имеет в вечернее время - к сожалению, простые углеводы, съеденные за ужином, пойдут прежде всего в жир на животе.

Что повышает содержание гликогена в мышцах:

  • Регулярные силовые тренировки
  • Употребление углеводов с низким гликемическим индексом
  • Прием после тренировки
  • Восстанавливающий массаж мышц

Влияние гликогена на сжигание жира

Если вы хотите сжечь жир с помощью тренировок, помните о том, что тело сперва расходует запасы гликогена, а лишь затем переходит к запасам жира. Именно на этом факте и строится рекомендация о том, что эффективная должна проводиться не менее 40-45 минут при умеренном пульсе - сперва организм тратит гликоген, затем переходит на жир.

Практика показывает, что жир быстрее всего сгорает при кардиотренировках утром на пустой желудок или использовании . Поскольку в этих случаях уровень глюкозы в крови уже находится на минимальном уровне, с первых минут тренинга тратятся запасы гликогена из мышц (а затем и жира), а вовсе не энергия глюкозы из крови.

***

Гликоген является основной формой хранения энергии глюкозы в животных клетках (в растениях гликогена нет). В теле взрослого человека накапливается примерно 200-300 г гликогена, запасаемого преимущественно в печени и в мышцах. Гликоген тратится при силовых и кардиотренировках, а для роста мышц чрезвычайно важно правильно восполнять его запасы.

Научные источники:

  1. Fundamentals of glycogen metabolism for coaches and athletes,

Резервы гликогена используются по-разному в зависимости от функциональных особенностей клетки.

Гликоген печени расщепляется при снижении концентрации глюкозы в крови, прежде всего между приемами пищи. Через 12-18 часов голодания запасы гликогена в печени полностью истощаются.

В мышцах количество гликогена снижается обычно только во время физической нагрузки – длительной и/или напряженной. Гликоген здесь используется для обеспечения глюкозой работы самих миоцитов. Таким образом, мышцы, как впрочем и остальные органы, используют гликоген только для собственных нужд.

Мобилизация (распад) гликогена или гликогенолиз активируется при недостатке свободной глюкозы в клетке, а значит и в крови (голодание, мышечная работа). При этом уровень глюкозы крови "целенаправленно" поддерживает только печень , в которой имеется глюкозо-6-фосфатаза, гидролизующая фосфатный эфир глюкозы. Образуемая в гепатоците свободная глюкоза выходит через плазматическую мембрану в кровь.

В гликогенолизе непосредственно участвуют три фермента:

1. Фосфорилаза гликогена (кофермент пиридоксальфосфат) – расщепляет α-1,4-гликозидные связи с образованием глюкозо-1-фосфата. Фермент работает до тех пор, пока до точки ветвления (α1,6-связи) не останется 4 остатка глюкозы.

Роль фосфорилазы при мобилизации гликогена

2. α(1,4)-α(1,4)-Глюкантрансфераза – фермент, переносящий фрагмент из трех остатков глюкозы на другую цепь с образованием новой α1,4-гликозидной связи. При этом на прежнем месте остается один остаток глюкозы и "открытая" доступная α1,6-гликозидная связь.

3. Амило-α1,6-глюкозидаза , ("деветвящий " фермент) – гидролизует α1,6-гликозидную связь с высвобождением свободной (нефосфорилированной) глюкозы. В результате образуется цепь без ветвлений, вновь служащая субстратом для фосфорилазы.

Роль ферментов в расщеплении гликогена

Синтез гликогена

Гликоген способен синтезироваться почти во всех тканях, но наибольшие запасы гликогена находятся в печени и скелетных мышцах. Накопление гликогена в мышцах отмечается в период восстановления после нагрузки, особенно при приеме богатой углеводами пищи. В печени синтез гликогена происходит только после еды, при гипергликемии. Это объясняется особенностями печеночной гексокиназы (глюкокиназы ), которая имеет низкое сродство к глюкозе и может работать только при ее высоких концентрациях, при нормальных концентрациях глюкозы в крови ее захват печенью не производится.

Непосредственно синтез гликогена осуществляют следующие ферменты:

1. Фосфоглюкомутаза – превращает глюкозо-6-фосфат в глюкозо-1-фосфат;

2. Глюкозо-1-фосфат-уридилтрансфераза – фермент, осуществляющий ключевую реакцию синтеза. Необратимость этой реакции обеспечивается гидролизом образующегося дифосфата;

Реакции синтеза УДФ-глюкозы

3. Гликогенсинтаза – образует α1,4-гликозидные связи и удлиняет гликогеновую цепочку, присоединяя активированный С 1 УДФ-глюкозы к С 4 концевого остатка гликогена;

Гликоген – это «запасной» углевод в человеческом организме, принадлежащий к классу полисахаридов.

Иногда его ошибочно называют термином «глюкоген». Важно не путать оба названия, поскольку второй термин – это белковый гормон-антагонист инсулина, вырабатываемый в поджелудочной железе.

Что такое гликоген?

Практически с каждым приемом пищи организм получает , которые поступают в кровь в виде глюкозы. Но порой ее количество превышает потребности организма и тогда глюкозные излишки накапливаются в форме гликогена, который при надобности расщепляется и обогащает тело дополнительной энергией.

Где хранятся запасы

Запасы гликогена в форме мельчайших гранул хранятся в печени и мышечной ткани. Также этот полисахарид есть в клетках нервной системы, почек, аорты, эпителия, мозга, в эмбриональных тканях и в слизистой оболочке матки. В теле здорового взрослого человека обычно есть около 400 г вещества. Но, кстати, при повышенных физических нагрузках организм преимущественно использует гликоген из мышц. Поэтому культуристы примерно за 2 часа до тренировки должны дополнительно насытить себя высокоуглеводной пищей, дабы восстановить запасы вещества.

Биохимические свойства

Полисахарид с формулой (C6H10O5)n химики называют гликогеном. Другое название этого вещества – животный . И хоть гликоген хранится в животных клетках, но это название является не совсем правильным. Открыл вещество французский физиолог Бернар. Почти 160 лет тому назад ученый впервые нашел в клетках печени «запасные» углеводы.

«Запасной» углевод хранится в цитоплазме клеток. Но если организм ощущает внезапный недостаток , гликоген высвобождается и попадает в кровь. Но, что интересно, трансформироваться в глюкозу, которая способна насытить «голодный» организм, способен только полисахарид, накопленный в печени (гепатоцид). Запасы гликогена в железе могут достигать 5 процентов от ее массы, и во взрослом организме составлять около 100-120 г. Своей максимальной концентрации гепатоциды достигают примерно через полтора часа после трапезы, насыщенной углеводам (кондитерские изделия, мучное, крахмалистая пища).

В составе мышц полисахарид занимает не больше 1-2 процентов от массы ткани. Но, учитывая общую площадь мускул, становится понятно, что гликогеновые «залежи» в мышцах превышают запасы вещества в печени. Также небольшие запасы углевода есть в почках, глиальных клетках мозга и в лейкоцитах (белых кровяных клетках). Таким образом, общие запасы гликогена во взрослом организме могут составить почти полкилограмма.

Интересно, что «запасной» сахарид найден в клетках некоторых растений, в грибах (дрожжевых) и бактериях.

Роль гликогена

В основном гликоген концентрируется в клетках печени и мышц. И следует понимать, что эти два источника резервной энергии обладают разными функциями. Полисахарид из печени поставляет глюкозу для организма в целом. То есть отвечает за стабильность уровня сахара в крови. При чрезмерной активности или между приемами пищи уровень глюкозы в плазме снижается. И дабы избежать гипогликемии гликоген, содержащийся в клетках печени, расщепляется и попадает в кровоток, выравнивая глюкозный показатель. Регуляторную функцию печени в этом плане нельзя недооценивать, поскольку изменение уровня сахара в любую сторону чревато серьезными проблемами, вплоть до летального исхода.

Мышечные запасы необходимы для поддержания работы опорно-двигательной системы. Сердце также является мышцей, в которой есть запасы гликогена. Зная об этом, становится понятно, почему у большинства людей после длительного голодания или при анорексиии возникают проблемы с сердцем.

Но если излишки глюкозы могут отложиться в форме гликогена, тогда возникает вопрос: «Почему углеводная пища откладывается на теле жировой прослойкой?». Этому также есть объяснение. Запасы гликогена в организме не безразмерны. При низкой физической активности запасы животного крахмала не успевают тратиться, поэтому глюкоза накапливается в другой форме – в виде липидов под кожей.

Помимо этого, гликоген необходим для катаболизма сложных углеводов, участвует в обменных процессах в организме.

Синтезирование

Гликоген – это стратегический запас энергии, который синтезируется в организме из углеводов.

Сначала тело использует полученные углеводы в стратегических целях, а остатки откладывает «на черный день». Дефицит энергии является причиной для расщепления гликогена к состоянию глюкозы.

Синтез вещества регулируется гормонами и нервной системой. Этот процесс, в частности в мышцах, «запускает» адреналин. А расщепление животного крахмала в печени активизирует гормон глюкагон (вырабатывается поджелудочной железой во время голодания). За синтезирование «запасного» углевода отвечает гормон инсулин. Процесс состоит из нескольких этапов и происходит исключительно во время приема пищи.

Гликогеноз и другие нарушения

Но в некоторых случаях расщепление гликогена не происходит. В результате гликоген накапливается в клетках всех органов и тканей. Обычно подобное нарушение наблюдают у людей с генетическими нарушениями (дисфункция ферментов, необходимых для расщепления вещества). Такое состояние называют термином гликогеноз и относят его к списку аутосомно-рецессивных патологий. На сегодня в медицине известны 12 типов этого заболевания, но пока достаточно изученной является только половина из них.

Но это не единственная патология, связанная с животным крахмалом. В число гликогеновых заболеваний также входит агликогеноз – нарушение, сопровождающееся полным отсутствием фермента, отвечающего за синтез гликогена. Симптомы болезни – ярко выраженные гипогликемии и судороги. Наличие агликогеноза определяют путем биопсии печени.

Гликоген, как запасной источник энергии, важно регулярно восстанавливать. Так, по крайней мере, утверждают ученые. Повышенная физическая активность может привести к тотальному истощению углеводных запасов в печени и мышцах, что в результате скажется на жизненной активности и работоспособности человека. В результате длительной безуглеводной диеты запасы гликогена в печени снижаются почти к нулю. Мышечные резервы истощаются во время интенсивных силовых тренировок.

Минимальная суточная доза гликогена составляет от 100 г и выше. Но эту цифру важно увеличить при:

  • усиленной умственной деятельности;
  • после «голодных» диет.
  • Напротив, осторожно к пище, богатой гликогеном, стоит отнестись лицам с дисфункцией печени, недостатком ферментов. Кроме того, диета с высоким содержанием глюкозы предусматривает снижение употребления гликогена.

    Пища для накопления гликогена

    Как утверждают исследователи, для адекватного накопления гликогена примерно 65 процентов калорий организм должен получать из углеводных продуктов. В частности, для восстановления запасов животного крахмала важно ввести в рацион хлебобулочные изделия, каши, злаки, разные фрукты и овощи.

    Лучшие источники гликогена: сахар, мед, шоколад, мармелад, варенье, финики, изюм, инжир, бананы, арбуз, хурма, сладкая выпечка, соки из фруктов.

    Влияние гликогена на вес тела

    Ученые определили, что во взрослом организме может накопиться около 400 граммов гликогена. Но также ученые определили и то, что каждый грамм резервной глюкозы связывает примерно 4 грамма воды. Вот и получается, что 400 г полисахарида – это примерно 2 кг гликогенного водного раствора. Этим объясняется обильное потоотделение во время тренировок: организм расходует гликоген и при этом теряет в 4 раза больше жидкости.

    Этим свойством гликогена объясняется и быстрый результат экспресс-диет для похудения. Безуглеводные диеты провоцируют интенсивное израсходование гликогена, а с ним – жидкости из организма. Один литр воды, как известно, – это 1 кг веса. Но как только человек возвращается к обычному рациону с содержанием углеводов, запасы животного крахмала восстанавливаются, а с ними и потерянная за период диеты жидкость. В этом и кроется причина недолгосрочности результата экспресс-похудения.

    Для по-настоящему эффективного похудения врачи советуют не только пересматривать рацион (отдавать предпочтение протеинам), но и усиливать физические нагрузки, которые ведут к быстрому израсходованию гликогена. Кстати, исследователи рассчитали, что 2-8 минут интенсивных кардиотренировок достаточно для использования запасов гликогена и потери лишнего веса. Но эта формула подходит исключительно лицам, не имеющим кардиологических проблем.

    Дефицит и излишек: как определить

    Организм, в котором, содержатся лишние порции гликогена, скорее всего, сообщит об этом сгущением крови и нарушениями работы печени. У людей с чрезмерными запасами этого полисахарида также случаются сбои в работе кишечника, увеличивается вес тела.

    Но и нехватка гликогена не проходит для организма бесследно. Дефицит животного крахмала может послужить причиной эмоционально-психических нарушений. Возникают апатии, депрессивные состояния. Также заподозрить истощение энергетических резервов можно у людей с ослабленным иммунитетом, плохой памятью и после резкой потери мышечной массы.

    Гликоген – важный резервный источник энергии для организма. Его недостаток – это не только снижение тонуса и упадок жизненных сил. Дефицит вещества скажется на качестве волос, кожи. И даже потеря блеска в глазах – это также результат нехватки гликогена. Если вы заметили у себя симптомы недостатка полисахарида, самое время подумать об усовершенствовании своего рациона.

    Мобилизация гликогена (гликогенолиз)

    Роль ферментов в расщеплении гликогена.


    Резервы гликогена используются по-разному в зависимости от функциональных особенностей клетки.

    Гликоген печени расщепляется при снижении концентрации глюкозы в крови, прежде всего между приемами пищи. Через 12-18 часов голодания запасы гликогена в печени полностью истощаются.

    В мышцах количество гликогена снижается обычно только во время физической нагрузки - длительной и/или напряженной. Гликоген здесь используется для обеспечения глюкозой работы самих миоцитов. Таким образом, мышцы, как впрочем и остальные органы, используют гликоген только для собственных нужд.

    Мобилизация (распад) гликогена или гликогенолиз активируется при недостатке свободной глюкозы в клетке, а значит и в крови (голодание, мышечная работа). При этом уровень глюкозы крови «целенаправленно» поддерживает только печень, в которой имеется глюкозо-6-фосфатаза, гидролизующая фосфатный эфир глюкозы. Образуемая в гепатоците свободная глюкоза выходит через плазматическую мембрану в кровь.

    1. Фосфорилаза гликогена (кофермент пиридоксальфосфат) - расщепляет α-1,4-гликозидные связи с образованием глюкозо-1-фосфата. Фермент работает до тех пор, пока до точки ветвления (α1,6-связи) не останется 4 остатка глюкозы;
    2. α(1,4)-α(1,4)-Глюкантрансфераза - фермент, переносящий фрагмент из трех остатков глюкозы на другую цепь с образованием новой α1,4-гликозидной связи. При этом на прежнем месте остается один остаток глюкозы и «открытая» доступная α1,6-гликозидная связь;
    3. Амило-α1,6-глюкозидаза, («деветвящий» фермент) - гидролизует α1,6-гликозидную связь с высвобождением свободной (нефосфорилированной) глюкозы. В результате образуется цепь без ветвлений, вновь служащая субстратом для фосфорилазы.

    Гликоген способен синтезироваться почти во всех тканях, но наибольшие запасы гликогена находятся в печени и скелетных мышцах.

    Накопление гликогена в мышцах отмечается в период восстановления после работы, особенно при приеме богатой углеводами пищи.

    В печени гликоген накапливается только после еды, при гипергликемии. Такие отличия печени и мышц обусловлены наличием различных изоферментов гексокиназы, фосфорилирующей глюкозу в глюкозо-6-фосфат. Для печени характерен изофермент (гексокиназа IV), получивший собственное название - глюкокиназа. Отличиями этого фермента от других гексокиназ являются:

    • низкое сродство к глюкозе (в 1000 раз меньше), что ведет к захвату глюкозы печенью только при ее высокой концентрации в крови (после еды),
    • продукт реакции (глюкозо-6-фосфат) не ингибирует фермент, в то время как в других тканях гексокиназа чувствительна к такому влиянию. Это позволяет гепатоциту в единицу времени захватывать глюкозы больше, чем он может сразу же утилизовать.

    Благодаря особенностям глюкокиназы гепатоцит эффективно захватывает глюкозу после еды и впоследствии метаболизирует ее в любом направлении. При нормальных концентрациях глюкозы в крови ее захват печенью не производится.

    Непосредственно синтез гликогена осуществляют следующие ферменты:

    Фосфоглюкомутаза

    Фосфоглюкомутаза - превращает глюкозо-6-фосфат в глюкозо-1-фосфат.

    Глюкозо-1-фосфат-уридилтрансфераза

    Реакции синтеза УДФ-глюкозы.


    Глюкозо-1-фосфат-уридилтрансфераза - фермент, осуществляющий ключевую реакцию синтеза. Необратимость этой реакции обеспечивается гидролизом образующегося дифосфата.

    Гликогенсинтаза


    Гликогенсинтаза - образует α1,4-гликозидные связи и удлиняет гликогеновую цепочку, присоединяя активированный С 1 УДФ-глюкозы к С 4 концевого остатка гликогена.

    Амило-α1,4-α1,6-гликозилтрансфераза

    Роль гликогенсинтазы и гликозилтрансферазы в синтезе гликогена.


    Амило-α1,4-α1,6-гликозилтрансфераза, «гликоген-ветвящий» фермент - переносит фрагмент с минимальной длиной в 6 остатков глюкозы на соседнюю цепь с образованием α1,6-гликозидной связи.

    Синтез и распад гликогена реципрокны

    Активность обмена гликогена в зависимости от условий

    Изменение активности ферментов обмена гликогена в зависимости от условий.


    Активность ключевых ферментов метаболизма гликогена гликогенфосфорилазы и гликогенсинтазы изменяется в зависимости наличия в составе фермента фосфорной кислоты - они активны либо в фосфорилированной, либо в дефосфорилированной форме.

    Присоединение фосфатов к ферменту производят протеинкиназы, источником фосфора является АТФ:

    • фосфорилаза гликогена активируется после присоединения фосфатной группы;
    • синтаза гликогена после присоединения фосфата инактивируется.

    Скорость фосфорилирования указанных ферментов повышается после воздействия на клетку адреналина , глюкагона и некоторых других гормонов. В результате адреналин и глюкагон вызывают гликогенолиз, активируя фосфорилазу гликогена.

    Например,

    • во время мышечной работы адреналин вызывает фосфорилирование внутримышечных ферментов обмена гликогена. В результате фосфорилаза гликогена активируется, синтаза инактивируется. В мышце происходит распад гликогена, образуется глюкоза для обеспечения энергией мышечного сокращения;
    • при голодании в ответ на снижение глюкозы крови из поджелудочной железы секретируется глюкагон. Он воздействует на гепатоциты и вызывает фосфорилирование ферментов обмена гликогена, что приводит к гликогенолизу и повышению глюкозы в крови.

    Способы активации синтазы гликогена

    Аллостерическая активация гликогенсинтазы осуществляется глюкозо-6-фосфатом.

    Еще одним способом изменения ее активности является химическая (ковалентная) модификация. При присоединении фосфата гликогенсинтаза прекращает работу, то есть она активна в дефосфорилированном виде. Удаление фосфата от ферментов осуществляют протеинфосфатазы. Активатором протеинфосфатаз выступает инсулин - в результате он повышает синтез гликогена.

    Вместе с этим, инсулин и глюкокортикоиды ускоряют синтез гликогена, увеличивая количество молекул гликогенсинтазы.

    Способы активации фосфорилазы гликогена

    Скорость гликогенолиза лимитируется только скоростью работы фосфорилазы гликогена. Ее активность может изменяться тремя способами:

    • ковалентная модификация;
    • кальций-зависимая активация;
    • аллостерическая активация с помощью АМФ.

    Ковалентная модификация фосфорилазы

    Аденилатциклазный способ активации фосфорилазы гликогена.


    При действии некоторых гормонов на клетку происходит активация фермента через аденилатциклазный механизм , который является так называемым каскадным регулированием. Последовательность событий в данном механизме включает:

    1. Молекула гормона (адреналин, глюкагон) взаимодействует со своим рецептором;
    2. Активный гормон-рецепторный комплекс воздействует на мембранный G-белок;
    3. G-белок активирует фермент аденилатциклазу;
    4. Аденилатциклаза превращает АТФ в циклический АМФ (цАМФ) - вторичный посредник (мессенджер);
    5. цАМФ аллостерически активирует фермент протеинкиназу А;
    6. Протеинкиназа А фосфорилирует различные внутриклеточные белки:
      • одним из этих белков является синтаза гликогена, ее активность угнетается,
      • другим белком - киназа фосфорилазы, которая при фосфорилировании активируется;
    7. Киназа фосфорилазы фосфорилирует фосфорилазу «b» гликогена, последняя в результате превращается в активную фосфорилазу «а»;
    8. Активная фосфорилаза «а» гликогена расщепляет α-1,4-гликозидные связи в гликогене с образованием глюкозо-1-фосфата.

    Кроме гормонов, влияющих на активность аденилатциклазы через G-белки, существуют иные способы регуляции этого механизма. Например, после воздействия инсулина активируется фермент фосфодиэстераза, которая гидролизует цАМФ и, следовательно, снижает активность гликоген-фосфорилазы.

    Активация ионами кальция заключается в активации киназы фосфорилазы не протеинкиназой, а ионами Ca 2+ и кальмодулином. Этот путь работает при инициации кальций-фосфолипидного механизма. Такой способ оправдывает себя, например, при мышечной нагрузке, если гормональные влияния через аденилатциклазу недостаточны, но в цитоплазму под влиянием нервных импульсов поступают ионы Ca 2+ .

    Стойкость нашего организма к неблагоприятным условиям внешней среды объясняется его умением делать своевременные запасы питательных веществ. Одним из важных «запасных» веществ организма является гликоген – полисахарид, образуемый из остатков глюкозы .

    При условии, что человек ежесуточно получает необходимую норму углеводов, то глюкоза, находящаяся в виде гликогена клеток, может быть оставлена про запас. Если же человек испытывает энергетический голод, в таком случае происходит активация гликогена, с его последующей трансформацией в глюкозу.

    Продукты богатые гликогеном:

    Общая характеристика гликогена

    Гликоген в простонародье называют животным крахмалом . Он представляет собой запасной углевод, который производится в организме животных и человека. Его химическая формула - (C 6 H 10 O 5) n . Гликоген является соединением глюкозы, которая в виде мелких гранул откладывается в цитоплазме клеток мышц, печени, почек, а также в клетках мозга и белых кровяных тельцах. Таким образом, гликоген представляет собой энергетический резерв, способный восполнить недостаток глюкозы, в случае отсутствия полноценного питания организма.

    Клетки печени (гепатоциты) являются лидерами по накоплению гликогена! Они могут на 8 процентов своего веса состоять из этого вещества. При этом клетки мышц и других органов, способны накапливать гликоген в количестве не более 1 – 1,5%. У взрослых общее количество гликогена печени может достигать 100-120 грамм!

    Суточная потребность организма в гликогене

    По рекомендации медиков, суточная норма гликогена не должна быть ниже 100 граммов в сутки. Хотя необходимо учесть, что гликоген состоит из молекул глюкозы, и расчет может осуществляться только на взаимозависимом основании.

    Потребность в гликогене возрастает:

    • В случае повышенных физических нагрузок, связанных с выполнением большого количества однообразных манипуляций. В результате этого, мышцы страдают от недостатка кровенаполнения, а также от нехватки глюкозы в крови.
    • При выполнении работ, связанных с мозговой деятельностью. В данном случае, гликоген, содержащийся в клетках мозга, быстро преобразуется в энергию, необходимую для работы. Сами же клетки, отдав накопленное, требуют пополнения запасов.
    • В случае ограниченного питания. В данном случае, организм, недополучая глюкозу из продуктов питания, начинает перерабатывать свои запасы.

    Потребность в гликогене снижается:

    • При употреблении большого количества глюкозы и глюкозоподобных соединений.
    • При заболеваниях, связанных с повышенным употреблением глюкозы.
    • При болезнях печени.
    • При гликогенезах, вызванных нарушением ферментативной деятельности.

    Усваиваемость гликогена

    Гликоген относится к группе быстро усваиваемых углеводов, с отсрочкой к исполнению. Данная формулировка объясняется так: до тех пор, пока в организме достаточно прочих источников энергии, гликогеновые гранулы будут храниться в нетронутом виде. Но как только мозг подаст сигнал о недостатке энергетического обеспечения, гликоген под воздействием ферментов начинает преобразовываться в глюкозу.

    Полезные свойства гликогена и его влияние на организм

    Поскольку молекула гликогена представлена полисахаридом глюкозы, то его полезные свойства, а также влияние на организм соответствует свойствам глюкозы.

    Гликоген является полноценным источником энергии для организма в период нехватки питательных веществ, необходим для полноценной умственной и физической деятельности.

    Взаимодействие с эссенциальными элементами

    Гликоген обладает способностью быстро преобразовываться в молекулы глюкозы. При этом он отлично контактирует с водой, кислородом, рибонуклеиновой (РНК), а также дезоксирибонуклеиновой (ДНК) кислотами.

    Признаки нехватки гликогена в организме

    • апатия;
    • ухудшение памяти;
    • снижение мышечной массы;
    • слабый иммунитет;
    • депрессивное настроение.

    Признаки избытка гликогена

    • сгущение крови;
    • нарушения функций печени;
    • проблемы с тонким кишечником;
    • увеличение массы тела.

    Гликоген для красоты и здоровья

    Поскольку гликоген является внутренним источником энергии в организме, то его недостаток способен вызвать общее снижение энергетичности всего организма. Это отражается на деятельности волосяных фолликулов, клеток кожи, а также проявляется в потере блеска глаз.