Развитие телескопов. Школьная энциклопедия

МОУ Озёрская СОШ

«История создания телескопа»

Исполнитель: Плохотнюк Алёна,

учащаяся 10 класс

Учитель-консультант: Фомичёва Е. В.

2009 -2010 уч. Год

1. Введение……………………………………………………………..3стр.

2. История первых телескопов:

2.1. Открытие детей мастера Липперсгея………………………3-4стр.

2.2. «Телескопическая лихорадка»………………………………..4стр.

2.3. Телескопы братьев Гюйгенс………………………………….5стр.

2.4. Телескопы Галилея…………………………………………5-6стр.

3. Назначение телескопов…………………………………………..6-7стр.

4. Виды телескопов:

4.1. Телескоп-рефрактор………………………………………….7стр.

4.2. Телескоп-рефлектор………………………………………….7стр.

4.3. Менисковый телескоп. ………...…………………………….7стр.

5. Возможности современных телескопов:

5.1. Телескоп без глаза…………………………………………....8стр.

5.2. Радиотелескопы……………………………………………8-9стр.

5.3. Инфракрасные телескопы……………………………………9стр.

5.4. Ультрафиолетовые телескопы…………………………….....9стр.

5.5. Рентгеновский телескоп………………………………………9стр.

5.6. Гамма-телескопы…………………………………………….10стр.

6. Примеры телескопов…………………………………………..10-11стр.

7. Космический телескоп………………………………………...11-12стр.

8. Заключение……………………………………………………..…12стр.

9. Приложение……………………………………………………13-14стр.

10. Список используемой литературы……………………………..15стр.

“Унося наши чувства далеко за границы воображения

наших предков, эти замечательные инструменты,

телескопы, открывают путь к более глубокому

и более прекрасному пониманию природы”
Рене Декарт, 1637г.

1. Введение

Небо существует только для человека и только в его мыслях. Ведь небо есть не что иное, как картина космоса, наблюдаемая человеком с его крохотного обиталища – Земли. Представления людей о звёздном мире меняются из года в год. О космосе невозможно сказать, что он уже познан, ведь в нем столько тайн, столько самых невероятных событий…

Иногда, глядя в небо, я задумывалась над тем, как же могли еще в старину, глядя на, казалось бы, не подвижное, почти не меняющееся небо, делать открытия, находить новые планеты, определять траектории движения планет, одним словом, «разгадывать» тайны Вселенной. Ведь далеко не все можно увидеть невооруженным глазом. Заинтересовавшись этой проблемой, я выяснила, что первым астрономическим прибором был телескоп. За прошедшие века он совершенствовался и изменялся. Какой восторг вызвал у обывателей и учёных мужей первый телескоп! Какие невероятные открытия за этим последовали! Но с годами телескоп не утратил своей значимости. Именно поэтому мне захотелось узнать, каким же был первый телескоп, кто был его первооткрывателем и какими возможностями обладает современный телескоп? И вот какие «открытия» я для себя сделала…

2. История первых телескопов:

2.1. Открытие детей мастера Липперсгея

В самом начале XVII столетия жил в голландском городе Миддельбурге оптик Липперсгей. (Приложение №1) Обыкновенный ремесленник, мастер по изготовлению очковых стекол. Однажды сынишка Липперсгея сидел дома. Чтобы развлечься, мальчуган вытащил на подоконник целый ворох отшлифованных испорченных очковых стекол и стал складывать их, заглядывая поочередно в получившиеся сочетания. Он рассматривал мух. Зажимая линзы в кулаках, подносил их к глазам. Потом он взял в каждую руку по стеклу и приставил оба кулака к одному глазу одновременно,… Что тут произошло! Мальчик закричал, бросил стекла, закрыл глаза руками и убежал в глубину комнаты. Ему показалось, что башня ратуши, на которую он посмотрел через две линзы, шагнула ему на встречу. Это было похоже на колдовство.

Прошло несколько дней – Липперсгей явился магистрат. В руках у мастера была свинцовая трубка со вставленными в неё линзами. Этот удивительный снаряд позволял созерцать отдаленные предметы так, как если бы они находились совсем рядом. Липперсгей предложил продать городским властям «свое изобретение». Миддельбургские купцы охотно глядели в трубку, размахивали широкими рукавами, но признать автором изобретения Липперсгея отказывались. Липперсгей много раз пытался запатентовать и продать трубку то голландским Генеральным штатам, то принцу Морицу Оранскому. Однако патента так и не получил. Скоро в соседних городах объявились и другие оптики, претендующие на честь изобретения зрительной трубки. Слухи о голландском изобретении покатилось по всей Европе, обрастая невероятными подробностями и искажениями.

2.2. «Телескопическая лихорадка»

В середине XVII века «телескопическая лихорадка» захватила всех. В городах линзы шлифовали в домах ремесленников и купцов, дворян и вельмож. Изготовление телескопов стало модным. А наблюдение неба – просто необходимым занятием каждого более или менее образованного человека. Теперь люди могли не просто следить за перемещением по небу блуждающих звезд, но и рассматривать подробности строения Луны, наблюдать планеты вместе со спутниками. Правда, первое время такие исследования требовали от наблюдателя массы усилий. Плохое качество шлифованных линз давало вместо светящейся точки мутное расплывчатое пятно, окруженное вдобавок цветным ореолом. (Приложения №2-7)

2.3. Телескопы братьев Гюйгенс

Главной задачей стало получение телескопов с большим увеличением. В середине XVII столетия шлифовкой линз и устройством телескопов увлекся сын богатого голландца Христиан Гюйгенс. Будучи совсем молодым человеком, он теоретически нашел наилучшую форму линз. Получалось, что для уменьшения искажений кривизна поверхности одной линзы должна быть в шесть раз меньше, чем у другой. Но вот беда: оптика в то время ещё не научились шлифовать линзы с заданной кривизной.

Выход оставался один: собирать телескопы из большого количества слабых, но дающих хорошее изображение линз. Так появились первые длинные телескопы.

Первый инструмент, который построил Христиан Гюйгенс вместе с братом, имел 12 футов в длину. Это примерно три с половиной метра. А отверстие его было всего 57 миллиметров. То есть в шестьдесят раз меньше длины.

Гюйгенс с его помощью открывает спутник Сатурна. Кроме того, он смутно видит у планеты те же странные выступы по бокам. Чтобы разглядеть загадочные образования у Сатурна, братья Гюйгенсы берутся за постройку еще более длиннофокусного телескопа. Его размеры должны быть 23 фута. Такую длинную трубу уже трудно подвешивать к столбам, ещё труднее её поворачивать и наводить. На Гюйгенс не сдаётся и в конце концов открывает кольцо Сатурна. Скоро, чтобы облегчить конструкцию телескопа, вместо труб стали делать легкие рамы из деревянных планок. На рамках укрепляли объектив и окуляр, а в промежутке ставили диафрагмы.

Длина телескопа продолжается расти. Она достигла сначала 20, потом 30, даже 40 и более метров. Пришлось отказаться от рам. Объектив в небольшой оправе укрепляли на крыше здания или на специальной вышке. Наблюдатель же, с окуляром в руках, старался расположиться так, чтобы желаемое светило оказалось в створе с объективом и окуляром.

2.4. Телескопы Галилея.
В 1609, узнав об изобретении голландскими оптиками зрительной трубы, Галилей (Приложение №8) самостоятельно изготовил телескоп с плосковыпуклым объективом и плосковогнутым окуляром, который давал трехкратное увеличение. Через некоторое время им были изготовлены телескопы с 8- и 30-кратным увеличением.(приложение №4) В 1609, начав наблюдения с помощью телескопа, Галилей обнаружил на Луне темные пятна, названные им морями, горы и горные цепи. 7 января 1610 открыл четыре спутника планеты Юпитер, установил, что Млечный Путь является скоплением звезд.

После того как утихли первые восторги по поводу новых возможностей, открытых телескопами, наблюдатели всерьёз задумались над качеством изображения. Все открытия, «лежавшие на поверхности», были уже сделаны, и люди видели, люди понимали, что для дальнейшего проникновения в тайны неба Земли нужно улучшать инструменты.

Первым приемником изображений в телескопе, изобретенным Галилеем в 1609 году, был глаз наблюдателя. С тех пор не только увеличились размеры телескопов, но и принципиально изменились приемники изображения. В начале ХХ века в астрономии стали употребляться фотопластинки, чувствительные в различных областях спектра. Затем были изобретены фотоэлектронные умножители (ФЭУ), электронно-оптические преобразователи (ЭОП). (Приложения №9-10)
3. Назначение телескопов

Какими бы ни были конструкции телескопов, у них есть общие черты. Назначение всех телескопов заключатся в увеличении угла зрения, под которым видны небесные тела. Телескоп собирает во много раз больше света, приходящего от небесного светила, чем глаз человека. Благодаря этому в телескоп можно рассматривать не видимые невооруженным глазом детали поверхности ближайших в Земле небесных тел и увидеть множество слабых звезд.

Основная задача телескопа, как и любого оптического прибора, максимально четко и детально передать наблюдателю то, что он хочет увидеть. Само слово телескоп, имеет греческое происхождение, что в дословном переводе означает "далеко видеть".

Эволюция параметров оптических телескопов.

В ночь на 7 января 1610 г. в истории наблюдательной астрономии произошел подлинный переворот: впервые зрительная труба была направлена на небо. В течение нескольких ночей великий Галилей (1564 — 1642) открыл недоступные невооруженному глазу кратеры, горные вершины и цепи на Луне, спутники Юпитера, мириады звезд, составляющих . Несколько позже Галилей наблюдал фазы Венеры и странные образования у Сатурна (что это были знаменитые кольца, стало известно значительно позже, в 1658 г., в результате наблюдений Гюйгенса).

С завидной оперативностью Галилей публикует результаты своих наблюдений в «Звездном вестнике». Книга почти в 10 печатных листов была набрана и отпечатана всего за несколько дней — явление, почти невозможное даже в наше время. Она вышла уже в марте того же 1610 г.

Галилей не считается изобретателем примененной им зрительной трубы, хотя и изготовил ее лично. Ранее до него дошли слухи, что оптические инструменты, в которых объективом служит плосковыпуклая линза, а окуляром — плосковогнутая, появились в Голландии. Приоритет изобретения оспаривали несколько голландских оптиков, в том числе Захарий Янсен, Якоб Меций и Генрих Липперсгей (последний, по-видимому, имел для этого больше оснований). Однако Галилей сумел самостоятельно разгадать устройство такого прибора и воплотить свое представление об этих трубах «в металл», построив за несколько дней три трубы. Качество каждой последующей было значительно выше предыдущей. Но главное, именно Галилей первым направил свою трубу на небо!

Появилась «голландская» труба не на пустом месте. Еще в 1604 г. вышла книга И. Кеплера «Дополнения к Вителлию, в которых излагается оптическая часть астрономии «.

Написанное в форме дополнения к трактату авторитетного польского ученого XII в. Вителлия (Вителло) это сочинение стало явлением в исследовании законов геометрической оптики. Действительно, Кеплер, рассматривая ход лучей в оптической системе, состоящей из двояковыпуклой и двояковогнутой линз, дает теоретическое обоснование устройству будущей «голландской» (или «галилеевой») оптической трубы.

Это тем более удивительно, что сам Кеплер из-за врожденного дефекта зрения не мог быть хорошим наблюдателем. Он страдал монокулярной полиопией (множественным зрением), при которой одиночный объект кажется множественным. Этот дефект усугублялся еще и сильной близорукостью. Но справедливы слова Гёте: «Когда историю жизни Кеплера сопоставляешь с тем, кем он стал и что он сделал, радостно изумляешься и при этом убеждаешься, что истинный гений преодолевает любые препятствия «.

Узнав об открытиях Галилея и получив от него экземпляр «Звездного вестника», Кеплер уже 19 апреля 1610 г. направляет Галилею восторженный отзыв, одновременно публикуя его («Разговор со звездным вестником»), и… возвращается к рассмотрению оптических вопросов. А через несколько дней после завершения «Разговора» Кеплер разрабатывает проект устройства зрительной трубы нового типа — телескопа-рефрактора , описание которого помещает в своем сочинении «Диоптрике». Книга была написана в августе — сентябре того же 1610 г., а вышла из печати в 1611 г.

В этой работе Кеплер среди других рассмотрел в качестве основы астрономической трубы нового типа комбинацию двух двояковыпуклых линз. Задача, поставленная им, формулировалась так: «С помощью двух двояковыпуклых стекол получить отчетливые, большие, но обратные изображения. Пусть линза, служащая объективом, находится на таком расстоянии от предмета, что его обратное изображение получается неотчетливым. Если теперь между глазом и этим неотчетливым изображением, недалеко от последнего, поставить второе собирательное стекло (окуляр), то оно сделает исходящие от предмета лучи сходящимися и даст благодаря этому отчетливое изображение «.

Кеплер показал, что возможно получение и прямого изображения. Для этого в данную систему необходимо ввести третью линзу.

Преимущество системы, предложенной Кеплером, заключалось прежде всего в большем поле зрения. Известно, что лучи света от звезды, находящейся далеко от оптической оси, не попадают в центр окуляра. И если в вогнутом окуляре «голландско-галилеевой» трубы они еще дальше отклоняются от центра (т. е. не видны), то в выпуклом окуляре Кеплера они соберутся к центру и попадут в зрачок глаза. Благодаря этому значительно увеличивается поле зрения, в котором все наблюдаемые объекты видны ясно и четко. К тому же в плоскости изображения в трубе Кеплера между объективом и окуляром можно поместить прозрачную пластинку с отградуированной на ней сеткой или шкалой. Это позволит производить не только наблюдения, но и необходимые измерения. Ясно, что «кеплерова» труба вскоре вытеснила «голландскую», которая в настоящее время применяется только в театральных биноклях.

У Кеплера не было необходимых средств и специалистов для изготовления телескопа своей конструкции. Но немецкий математик, физик и астроном К. Шейнер (1575-1650) по описанию, данному в «Диоптрике», в 1613 г. построил первый телескоп-рефрактор кеплеровского типа и применил его для наблюдения солнечных пятен и изучения вращения Солнца вокруг оси. Он же позже изготовил и трубу из трех линз, дающую прямое изображение.

Разработка эффективной конструкции телескопа была не единственным вкладом Кеплера в астрономическую и общую оптику. Среди его результатов отметим: доказательство основного фотометрического закона (интенсивность света обратно пропорциональна квадрату расстояния от источника), разработку математической теории рефракции и теории механизма зрения. Кеплер ввел термины «сходимость» и «расходимость» и показал, что очковые линзы исправляют дефекты зрения, изменяя сходимость лучей, прежде чем те попадут в глаз. Термины «оптическая ось» и «мениск» также введены в научное обращение Кеплером.

И в «Дополнениях», и в «Диоптрике» Кеплер изложил настолько революционный материал, что он вначале не был понят и не скоро одержал победу.

Не так давно итальянский ученый-оптик В. Ронки писал: «Гениальный комплекс работ Кеплера содержит все основные понятия современной геометрической оптики: ничто не утратило здесь значения за минувшие три с половиной столетия. Если какое-либо из положений Кеплера забыто, то об этом можно только пожалеть. Нынешнюю оптику можно с полным правом назвать кеплеровской».

После Кеплера важные шаги в развитии теории и ее практических приложений в оптике были сделаны Р. Декартом (1596-1650) и X. Гюйгенсом (1629-1695). Еще Кеплер пытался сформулировать закон преломления, однако точного выражения для коэффициента преломления ему найти не удалось, хотя в ходе экспериментов им открыто явление полного внутреннего отражения. Точная формулировка закона преломления была дана Декартом в разделе «Диоптрика» знаменитого сочинения «Рассуждение о методе» (1637). Для устранения сферических Декарт комбинирует сферические поверхности линз с гиперболическими и эллиптическими.

Гюйгенс работал с перерывами над своим сочинением «Диоптрика» 40 лет. При этом вывел основную формулу линзы, связав положение предмета на оптической оси с положением его изображения. Для уменьшения сферических аберраций телескопа он предложил конструкцию «воздушного телескопа «, в котором объектив, имевший большое фокусное расстояние, располагался на высоком столбе, а окуляр — на штативе, установленном на земле. Длина такого «воздушного телескопа» достигала 64 м.

С его помощью Гюйгенс обнаружил, в частности, кольца Сатурна и спутник Титан. В 1662 г. Гюйгенс предложил новую оптическую систему окуляра, впоследствии получившую его имя. Окуляр состоял из двух двояковыпуклых линз, разделенных значительным воздушным промежутком. Конструкция позволяла устранить хроматическую аберрацию и астигматизм. Известно также, что Гюйгенсу принадлежит и разработка волновой теории света.

Но для дальнейшего решения теоретических и практических проблем оптики был необходим гений И. Ньютона . Следует отметить, Ньютон (1643-1727) стал первым, кто уяснил, что размытость изображений в телескопе-рефракторе, какие бы усилия не предпринимались для устранения сферической аберрации, связана с разложением белого света на цвета радуги в линзах и призмах оптических систем (хроматическая аберрация ). Ньютон выводит формулу хроматической аберрации.

После многочисленных попыток создать конструкцию ахроматической системы, Ньютон остановился на идее зеркального телескопа (рефлектора) , объектив которого представлял собою вогнутое сферическое зеркало, не обладающее хроматической аберрацией. Овладев искусством получения сплавов и шлифовки металлических зеркал, ученый приступил к изготовлению телескопов нового типа.

Первый рефлектор, построенный им в 1668 г. имел весьма скромные размеры: длина — 15 см, диаметр зеркала — 2,5 см. Второй, созданный в 1671 г., был значительно больше. Он сейчас находится в музее Лондонского королевского общества.

Ньютон изучил также явление интерференции света, измерил длину световой волны, сделал ряд других замечательных открытий в оптике. Он считал свет потоком мельчайших частиц (корпускул), хотя и не отрицал его волновой природы. Только в XX в. удалось «примирить» волновую теорию света Гюйгенса с корпускулярной Ньютона — в физике утвердились представления о корпускулярно-волновом дуализме света.

Историки науки утверждают, что в XVII в. произошла естественно-научная революция. Кеплер был у ее истоков, открыв законы обращения планет вокруг Солнца. Ньютон на завершающем этапе стал основоположником современной механики, создателем математики непрерывных процессов. Эти ученые навечно вписали свои имена и в становлении астрономической оптики.

Развитие ахроматической оптики связано с именем Йозефа Фраунгофера. Иозеф Фраунгофер (1787-1826) был сыном стекольщика. В детстве работал учеником в зеркальной и стекольной мастерских. В 1806 г. поступил на службу в известную в то время крупную оптическую мастерскую Утцшнейдера в Бенедиктбейерне (Бавария); позднее стал ее руководителем и владельцем.

Выпускавшиеся мастерской оптические приборы и инструменты получили широкое распространение во всем мире. Им были введены существенные усовершенствования в технологию изготовления больших ахроматических объективов. Совместно с П. Л. Гинаном, Фраунгофер наладил фабричное производство хорошего флинтгласа и кронгласа, а также внес существенные усовершенствования во все процессы изготовления оптического стекла. Им была разработана оригинальная конструкция станка для полировки линз.

Фраунгофером был предложен также принципиально новый способ обработки линз, так называемый «способ шлифования по радиусу». Для контроля качества обработки поверхностей линз Фраунгофер использовал пробное отекло, а для измерения радиусов кривизны линз — сферометр, конструкция которого была разработана Георгом Райхенбахом в начале XIX в.

Использование пробного отекла для контроля поверхностей линз посредством наблюдения интерференционных «колец Ньютона» является одним из первых методов контроля качества обработки линз. Открытие Фраунгофером темных линий в солнечном спектре и использование их для точных измерений показателя преломления впервые создали реальную возможность использования уже довольно точных методов расчета аберраций оптических систем в практических целях. До тех пор пока нельзя было с достаточной точностью определить относительную дисперсию стеклянных линз, невозможно было и изготовление хороших ахроматических объективов.

В период после 1820 г. Фраунгофер выпустил большое количество высококачественных оптических инструментов с ахроматической оптикой. Крупнейшим его достижением было изготовление в 1824 г. ахроматического телескопа-рефрактора «Большой Фраунгофер». С 1825 по 1839 гг. на этом инструменте работал В. Я. Струве. За изготовление этого телескопа Фраунгофер был возведен в дворянство.

Ахроматический объектив телескопа Фраунгофера состоял из двояковыпуклой линзы из кронгласа и слабой плосковогнутой линзы из флинтгласа. Первичная хроматическая аберрация исправлялась относительно хорошо, сферическая аберрация была исправлена только для одной зоны. Интересно отметить, что хотя Фраунгофер не знал об «условии синусов», его ахроматический объектив практически не имел аберрации комы.

Изготовлением больших ахроматических телескопов-рефракторов занимались в начале XIX в. также и другие немецкие мастера: К. Утцшнейдер, Г. Мерц, Ф. Малер. В старой обсерватории г. Тарту, в Казанской обсерватории и Главной астрономической обсерватории РАН в Пулково до сих пор хранятся телескопы-рефракторы, выполненные этими мастерами.

В начале XIX в. производство ахроматических зрительных труб было также налажено в России — в Механических заведениях Главного Штаба в Петербурге. Одна из таких труб с восьмигранным тубусом из красного дерева и латунными оправами объектива и окуляра, установленная на треноге (1822 г.), хранится в Музее М. В. Ломоносова в Санкт-Петербурге.

Высоким качеством отличались телескопы, изготовленные Альваном Кларком . По профессии Альван Кларк был художник-портретист. Шлифовкой линз и зеркал занимался как любитель. С 1851 г. он научился перешлифовке старых линз и, проверяя качество их изготовления по звездам, открыл рад двойных звезд — 8 Секстанта, 96 Кита и др.

Получив подтверждение высокого качества обработки линз, он вместе с сыновьями — Джорджем и Грейамом организовал сначала небольшую мастерскую, а затем хорошо оборудованное предприятие в Кембридже, специализировавшееся на изготовлении и испытании объективов телескопов. Последнее осуществлялось в тоннеле длиной 70 м по искусственной звезде. Вскоре возникла крупнейшая в западном полушарии фирма «Альван Кларк и сыновья».

В 1862 г. фирмой Кларка был построен 18-дюймовый рефрактор, который был установлен на Дирбонской обсерватории (штат Миссисипи). Ахроматический объектив этого телескопа диаметром 47 см был изготовлен из кроновых и флинтовых дисков, полученных Кларком от фирмы «Ченс и братья». Фирма Кларка имела самое лучшее по тому времени оборудование для шлифовки линз.

В 1873 г. в Вашингтоне начал действовать 26-дюймовый ахроматический рефрактор Альвана Кларка. С его помощью Асаф Холл в 1877 г. открыл два спутника Марса — Фобос и Деймос.

Стоит отметить, что уже в то время, мощные телескопы практически приблизились к пределу возможностей традиционных оптических систем. Время революций прошло, и постепенно традиционная техника наблюдения за звездами достигла максимума своих возможностей. Впрочем, до изобретения радиотелескопов в середине 20-го века, другой возможности наблюдать межзвездное пространство, у астроном все равно не было.

Галактики имеют все виды форм. Но в прошлом формы галактик были более разнообразными и «специфическими», чем теперь. Со временем, по данным нового исследования, галактики имеют тенденцию превращаться в спирали. «Шесть миллиардов лет назад было намного больше разнообразных галактик, чем теперь - это очень удивительный результат», — сказал Родни Дельгадо-Серрано (Rodney Delgado-Serrano), главный автор новой публикации. «Это означает, что за прошлые шесть миллиардов лет, эти специфические галактики, должно быть, стали нормальными спиралями…»

Используя данные от Космического телескопа Hubble и Sloan Digital Sky Survey, команда астрономов создала первую демографическую перепись типов галактик в двух различных точках истории Вселенной, собрав для этого две хаббловских последовательности из разных Эр, которые помогли объяснить, как формируются галактики. Результаты показали, что последовательность Хаббла шесть миллиардов лет назад очень отличалась от той, которую астрономы видят сегодня.

Это изображение создано из данных полученных от NASA/ESA Hubble Space Telescope и Sloan Digital Sky Survey и демонстрирует, что хаббловская последовательность 6 млрд. лет назад очень отличалась от той, которую видят астрономы сегодня. Источник: NASA, ESA, Sloan Digital Sky Survey, R. Delgado-Serrano and F. Hammer (Observatoire de Paris)

Изображение с большим разрешением доступно . Верхнее изображение представляет текущую - или локальную - Вселенную, а нижнее изображение представляет нам отдаленные галактики (шесть миллиардов лет назад), показывая намного внушительные фрагменты специфических галактик. При осуществлении выборки 116 локальных и 148 отдаленных галактик, исследователи обнаружили, что у более чем половины современных спиральных галактик были так называемые специфические формы 6 миллиардов лет назад.

Эдвин Хаббл (Edwin Hubble) изобрел Последовательность Хаббла, иногда называемую диаграммой камертона Хаблла. Диаграмма делит галактики на три больших класса, по их основным формам: спиральные галактики, галактики с перемычкой (баром) и эллиптические галактики.

«Наша цель состояла в том, чтобы найти сценарий, который соединит текущую фотографию Вселенной с морфологией отдаленных, старших галактик - т.е. найти правильную подгонку этих пазлов галактической эволюции», — сказал Франсуа Хаммер (François Hammer) из Обсерватории де Пари, который возглавлял команду астрономов.

Астрономы считают, что эти своеобразные галактики стали спиралями через столкновения и слияние. Это противоречит широко распространенному мнению, что галактики - результат слияния в ходе формирования эллиптических галактик, но Хаммер и его команда предлагают гипотезу «спирального восстановления», которая предполагает, что галактики, пострадавшие от богатых газом слияний, медленно возрождаются как гигантские спирали с дисковой и центральной бульбой.

Слово «телескоп» в переводе с греческого обозначает «далеко смотреть» (τῆλε - далеко + σκοπέω - смотрю). Это прибор, предназначенный для наблюдения небесных тел.

Самые первые чертежи простейшего линзового телескопа (однолинзового и двухлинзового) были обнаружены ещё в записях Леонардо Да Винчи (1509 год). Сохранилась его запись: «Сделай стекла, чтобы смотреть на полную Луну». Леонардо строит или, по крайней мере, рисует станки для шлифовки вогнутых зеркал и разбирает производство очковых линз. Несомненно, что Леонардо не только мечтал о телескопических устройствах, но действительно их осуществлял. В кодексе А (лист 12) находятся следующие строки, поясненные рисунком: «Чем дальше отодвигаешь ты стекло от глаза, тем большими покажет оно предметы для глаз 50 лет; если глаза для сравнения глядят один через очковое стекло, другой вне его, то для одного предмет покажется большим, а для другого малым; но для этого видимые вещи должны быть удалены от глаза на 200 футов» . Леонардо передает здесь не все известное, но крайне просто повторимое наблюдение о значительных увеличениях, достигаемых при рассматривании простым глазом действительного изображения удаленного предмета от выпуклой линзы, если фокусное расстояния линзы больше, чем расстояние наилучшего зрения».
Годом изобретения телескопа, а точнее, зрительной трубы , считают 1608 год , а автором - голландского очкового мастера Иоанна Липперсгея , который продемонстрировал своё изобретение в Гааге. Но патент на изобретение ему не выдали, так как оказалось, что такие зрительные трубы были уже у других. Затем выяснилось, что такие трубы были еще раньше: в опубликованной в 1604 г. Кеплером работе было указано, что он рассмотрел ход лучей в оптической системе, состоящей из двояковыпуклой и двояковогнутой линз.

Таким образом, первенство изобретения прообраза телескопа (зрительной трубы) доказать трудно.

В 1609 году он создал свою первую зрительную трубу с трёхкратным увеличением. В том же году он построил телескоп длиной около полуметра с восьмикратным увеличением. Позже им был создан телескоп, дававший 32-кратное увеличение: длина телескопа была около метра, а диаметр объектива - 4,5 см. В сравнением с сегодняшними телескопами, это был очень несовершенный телескоп, обладавший всеми возможными аберрациями (ошибками или погрешностями изображения в оптической системе). Несмотря на это, с помощью этого несовершенного телескопа Галилей сделал ряд открытий.
Но сам Галилей свои астрономические зрительные трубы называл perspicillum .
Название «телескоп» предложил в 1611 году греческий математик Джованни Демизиани .
Первый телескоп Галилея имел апертуру (способность собирать свет и противостоять размытию деталей изображения) 4 сантиметра, фокусное расстояние около 50 сантиметров и степень увеличения 3x. Второй телескоп имел апертуру 4,5 сантиметра, фокусное расстояние 125 сантиметров, степень увеличения 34х. Несмотря на то, что телескопы Галилея были весьма несовершенны, в течение двух первых лет наблюдений ему удалось обнаружить четыре спутника планеты Юпитер, фазы Венеры, пятна на Солнце, горы на поверхности Луны (дополнительно была измерена их высота), наличие у диска Сатурна придатков в двух противоположных точках (природу этого явления Галилей разгадать не смог).

Устройство телескопа

Телескоп-рефрактор содержит два основных узла: линзовый объектив и окуляр. Объектив создаёт уменьшенное обратное изображение бесконечно удалённого предмета в фокальной плоскости (плоскость, на которой расположены точки, в которых собираются попавшие в систему плоскопараллельные пучки лучей). Это изображение рассматривается в окуляр как в лупу. В силу того, что каждая отдельно взятая линза обладает различными аберрациями (хроматической, сферической и проч.), обычно используются сложные объективы. Такие объективы представляют собой выпуклые и вогнутые линзы, составленные и склеенные с тем, чтобы минимизировать аберрации.

Телескоп Галилео Галилея

Телескоп Галилея имел в качестве объектива одну собирающую линзу, а окуляром служила рассеивающая линза. Такая оптическая схема даёт неперевернутое (земное) изображение. Главными недостатками этого телескопа являются очень малое поле зрения и сильная хроматическая аберрация. Такая система все ещё используется в театральных биноклях и иногда в самодельных любительских телескопах. В связи с тем, что телескоп Галилея дает прямое изображение, он может быть использован и как подзорная труба.

Историко-астрономические исследования, XV / Отв. ред. Л.Е. Майстров - М., Наука, 1980

В.А. Гуриков

ИСТОРИЯ СОЗДАНИЯ ТЕЛЕСКОПА

История создания телескопа относится к числу интереснейших вопросов истории оптики. И хотя на эту тему написано немало ценных и обстоятельных работ , в истории создания телескопа еще немало «белых пятен». Как, например, объяснить, почему, несмотря на то, что линзы были известны еще 2500 лет до н. э. , а очки были введены в употребление в конце XIII в., понадобилось столько времени для того, чтобы расположить две линзы одна за другой (ведь первые сведения о практической конструкции зрительной трубы относятся к концу XVI - началу XVII вв.)? Для того чтобы понять причины, вызвавшие такую «задержку» в появлении телескопа, необходимо разобраться в процессе развития оптики и закономерностях появления первых оптических приборов.

Элементы «практической оптики» - зажигательное действие линз и зеркал - были известны еще в глубокой древности. До нашего времени сохранилось немало бесспорных свидетельств древних авторов о зажигательном действии стекол и зеркал. Таким способом, по-видимому, издревле получали «чистый» жертвенный огонь. О таком зажигании еще в V в. до н. э. как явлении всем известном упоминает Аристофан в комедии «Облака». Плиний старший и Сенека сообщают о зажигательном действии стеклянных шаров. В сочинении «О темпераментах» К. Гален писал: «И об Архимеде говорят, что он сжигал вражеские триеры» . Иоанн Цецем описывает зажигательные свойства зеркал Архимеда в своем сочинении «Тысячи» . Как представлял себе Вителло сожжение Архимедом вражеских кораблей, мы видим на гравюре, помещенной на обложке его книги «Перспектива» (рис. 1).

Долгое время вокруг этого исторического факта возникали споры. Упомянутая легенда была подтверждена экспериментальным путем в наши дни греческим инженером Иоаннисом Саккасом. В ноябре 1973 г. он провел серию опытов, в которых использовал в качестве зажигательных приборов комбинацию отполированных до зеркального блеска металлических щитов. По сигналу Саккаса солдаты, державшие щиты, направляли солнечные лучи, отраженные от этих щитов, на модели древнеримских кораблей. Саккасом было проведено пять опытов. В последнем опыте, проведенном 6 ноября 1973 г. в 12 ч., было использовано 70 щитов, а расстояние от моделей было 55 м. В течение двух-трех минут модели кораблей загорались .

Основные оптические явления - Прямолинейное распространение света, независимость световых пучков, отражение от зеркальной поверхности и преломление света на границе двух прозрачных сред - были установлены опытным путем Евклидом и Аристотелем. У Герона Александрийского мы находим, что «наука о видении делится на оптику, т. е. собственно учение о видении, диоптрику, т. е. учение о преломлении света, и катоптрику, т. е. учение об отражении». Все последующие ученые-оптики стали называть свои труды «Диоптрикой» или «Катоптрикой».

Оптики античности, хотя и проявляли живой интерес к природе и свойствам света, но оптических приборов как таковых не создали . Это было связано прежде всего с незнанием строения и функций глаза, да и вообще механизма зрения. Возможность получения действительных изображений при помощи оптических систем им также оставалась неизвестной .

Картина развития оптики резко изменилась в средние века, когда ученым (Альхазену и др.) удалось установить, что зрение вызывается внешними лучами, приходящими в глаз от предметов. В связи с этим Альхазен впервые ставит вопрос о получении действительных изображений от зеркал и преломляющих сред .

Однако несмотря на существование достаточного количества теоретических трудов по оптике, практическая оптика, особенно в части применения линз, развивалась крайне слабо. Взаимосвязи между наукой и практикой в области оптики, по сути дела, не существовало . Подтверждением этого явилось изобретение в Италии в конце XIII в. очков (чисто эмпирическим путем). «Действительным бесспорным достижением XIII в., - пишет С.И. Вавилов, - явилось изобретение очков в Италии и постепенное распространение их. О появлении очков в Италии в конце XIII в. сохранилось несколько вполне ясных свидетельств. Обилие документальных данных показывает, что изобретение привилось и обратило на себя внимание. Замечательно и вместе с тем печально, что ученые-оптики XIII в., много писавшие о преломляющих средах, по-видимому, не причастны к изобретению очков» .

Постараемся понять, какими, обстоятельствами было вызвано появление очков, которые Ф. Энгельс называл в числе важнейших изобретений XIII в.

Итальянские мастера XIII в. были известны во всем мире как искусные шлифовальщики и полировщики. В процессе своей работы они сталкивались с необходимостью подносить изделия своего труда близко к глазу (например, с целью контроля качества обработки поверхности материала). Поэтому изобретение ими очковых линз являлось вполне естественным: они облегчали их работу, давали возможность рассматривать даже мелкие детали изготовляемых ими изделий. И в то же время ученые-оптики XIII в. не только не способствовали изобретению очков, но просто не знали об их существовании. Между тем, - отмечает С.И. Вавилов, - дело шло не о мелочи, а о самом замечательном результате оптики за многие века ее существования не только в практическом смысле, но и в отношении теоретических перспектив. Если бы стал известен подлинный изобретатель очков, имя его, несомненно, занимало бы одно из самых почетных мест в истории науки о свете» .

Разберемся, почему случилось так, что очковые линзы были открыты не учеными, а ремесленником, случайно?; Почему ученые-оптики, имевшие к этому времени достаточный объем знаний, не только не участвовали в изобретении очков, но и считали это изобретение вредным: «Основная цель зрения - знать правду, линзы для очков дают возможность видеть предметы большими или меньшими, чем они есть в действительности; через линзы можно увидеть предметы ближе или дальше, иной раз, кроме того, перевернутыми, деформированными и ошибочными, следовательно, они не дают возможности видеть действительность. Поэтому, если вы не хотите быть введенными в заблуждение, не пользуйтесь линзами» . Такую рекомендацию ученые-оптики давали в связи с незнанием механизма и природы зрения. «Очки, - пишет. С.И. Вавилов, - несмотря на всю их удивительность для человека

XIV и XV вв. и практическую важность, не сделались основой дальнейшего развития оптики. Книги Альхазена, Вителло, Бэкона мирно покоились в монастырских и университетских библиотеках, в университетах читались оптические курсы как часть quadrivium (повышенного курса образования. - В. Г.), именитые люди исправляли свое зрение в старости очками, но оптическая наука в XIV и XV вв., если не говорить о перспективе, имевшей значение только для художников, стояла на месте .

Первые упоминания о телескопе встречаются у английского средневекового ученого Роджера Бэкона (1214- 1292). Он был хорошо знаком с достижениями арабской оптики и, в частности, с работами Альхазена. Бэкон был также ученым, провозгласившим совершенно новые принципы научного знания. Он гениально предвидит будущие успехи экспериментальной науки. С восторгом говорит он о будущей технике: «Расскажу о дивных делах природы и искусства, в которых нет ничего магического... Прозрачные тела могут быть так обделаны, что отдаленные предметы покажутся приближенными, и наоборот, так, что на невероятном расстоянии будем читать малейшие буквы и различать мельчайшие вещи, а также будем в состоянии усматривать звезды, как пожелаем» .

Читая эти строки, трудно себе представить, что почти 700 лет назад, во времена инквизиции, гениальный монах мечтал о телескопе! Его мечта была научной фантазией. Бэкон был противником магии: «Не надо прибегать к Магическим явлениям, когда силы науки достаточно, чтобы произвести действия», - писал он .

В трилогии, написанной Р. Бэконом по просьбе папы Климента IV «Opus minus» («Малый труд»), «Opus majus» («Большой труд») и «Opus tertium» («Третий труд») - много страниц посвящено оптическим темам, причем встречаются такие места, по которым можно предположить, что Бэкону были известны некоторые конструкции зрительных труб: «Таким образом, - пишет он, - увеличивая зрительный угол, мы будем в состоянии читать мельчайшие буквы с огромных расстояний и считать песчинки на земле, так как видимая величина обуславливается не расстоянием, а зрительным углом. Мальчик может казаться великаном, а взрослый горой» . Однако, по мнению С.И. Вавилова, такие строки на самом деле, вероятно, выражают только догадки и научные фантазии, которых не чуждался увлекающийся Doctor Mirabilis («Дивный доктор» - так звали Бэкона его современники - В. Г.), сообщавший читателю вместе с оптическими теоремами, например, сведения о летающих драконах и их пещерах» .

Мысли Р. Бэкона настолько опережали свою эпоху, что они не отразились на ходе развития современной ему науки, и впоследствии были преданы забвению.

Идеи создания телескопических систем встречаются далее в манускриптах Леонардо да Винчи. Камера и глаз - предметы многочисленных размышлений и опытов Леонардо. В его рукописях немало графических построений хода лучей в линзах, дается экспериментальный метод определения аберраций. Леонардо - бесспорный зачинатель фотометрии как точной измерительной науки. Перу Леонардо принадлежат рисунки станков для полировки вогнутых зеркал, он подробно рассматривает технологический процесс производства очковых линз. Леонардо первым делает попытку переноса естественнонаучного знания в прикладную область.

Из всего многообразия работ Леонардо в области оптики нас будет интересовать только один вопрос: была ли осуществлена Леонардо зрительная труба (телескопическое устройство)? «Несомненно, - пишет С.И. Вавилов, - что Леонардо не только мечтал о телескопических устройствах, но действительно их осуществлял» .Постараемся восстановить действительный ход событий.

Так заканчиваются первые страницы истории телескопа. Вслед за ними будет еще немало ярких страниц (создание зеркального телескопа, изобретение ахроматической оптики и др.).

Появление и развитие телескопических систем в XVII в. вызвало подлинную революцию как в оптике, так и в астрономии. Собственно именно благодаря широкому практическому использованию телескопических систем родилась техническая оптика как наука, а в астрономии появились новые приборы (телескопы, гелиоскопы и др.), дающие возможность, с одной стороны, более глубоко изучать Вселенную, а с другой, - способствующие дальнейшему прогрессу в развитии технической оптики.

ЛИТЕРАТУРА

1. Riekher Rolf. Fernrohre und ihre Meister. - Berlin, 1957.

2. King H. C. The History of the Telescope. - London, 1955.

3. Danjon A. et Couder A. Lunettes et telescopes. - Paris, 1935, p. 1 et 581.

4. Kisa A. Das Glas im Altertum: 3 Bd. - Leipzig, 1908.

5. Feldhaus F. M. Die ältesten optischen Hilfsmittel. - In: Der Sternfreund, 1936, Nr. 1.

6. Galeni Claudii. Opera omnia: t. 1 / Ed. CG. Kühn. - Lipsiae, 1821.

7. Tetes Joahnis. Chiliades / Ed. Th. Kiessling. - Hildesheim, 1963.

8. Ευάγγελου Σ. Σταμάτη. Αρχιμηδους άπαντα. - Αθ·ηναΐ, 1974. ,9. Вавилов С.И. Собр. соч.: т. III. - M.: Изд-во АН СССР, 1956.

10. Opticae Thesaurus libri Septem, nu primum editi, a Federico Ris-nero Basileae per Episcopios, 1572.

11. Gurikov V. A. On the Study of interconnections between natural and technical sciences. - In: Acta historiae rerum naturalium nee non technicarum: Special Issue, 8. - Pragae, 1976.

12. Ронки Васко. Влияние оптики XVII в. на общее развитие науки и философии. - Вопросы истории естествознания и техники, 1964 г., вып. 16.

13. Кудрявцев П.С. История физики: ч. I. - М.: Учпедгиз, 1948.

14. Розенбергер Ф. История физики: ч. I, M. - Л.: ОНТИ, 1937.

15. Леонардо да Винчи. Избранные естественнонаучные произведения. - М.: Изд-во АН СССР, 1955.

16. Argentieri D. L"optica de Leonardo. - In: Leonardo da Vinci. Edi-zione curata della moztra di Leonardo da Vinci in Milano, 1939.

17. Timpanaro. Seb. Un errore d"interpretazione d"una pagina li Leonardo. - In: Scritti di storia e critica della Scienza. - Firenze, 1952.

18. Дорфман Я.Г. Всемирная история физики (с древнейших времен до конца XVIII века). - М.: Наука, 1974.

19. Galileo G. Le Opera. - Firenze: Edizione Nazionale, 1890-1909, v. X, p. 252.

20. Borellus P. De vero Telescopii inventore, cum brevi omnium cons-piciliorum historia... - In: Accesit etiam Centuria observationum microscopicarum. - The Hague, 1655.

21. Соболь С.Л. Очерки по истории микроскопии: Диссертация, представленная на соискание ученой степени доктора биологических наук. - Москва; Фрунзе, 1943.

22. Moll G. On the first invention of telescopes collected from the notes and papers of the late professor van Swinden. - In: Journ. of the Royal Institution, 1831, v. 1.

23. Huygens Chr. La dioptrique. - In: «Oeuvres completes»: v. XIII. - Hague, 1916.

24. Galilei G. Le Opera. - Firenze: Edizione Nazionale, 1890-1909, v. Ill, pars 1.

25. Galilei G. Le Opera. - Firenze: Edizione Nazionale, 1890-1909, v. VI.

26. Зоннефельд А. Оптические данные небесного телескопа Галилея. - Йенское Обозрение, 1962, № 6.

27. Ронки Васко. Галилей и Торричелли - мастера точной оптики. - Труды Института истории естествознания и техники АН СССР; т. 28. - М.: Изд-во АН СССР, 1959.

28. Галилей Галилео. Звездный вестник. - Вопросы истории естествознания и техники, 1964, вып. 16, с. 3-28.

29. Галилей Галилео. Избранные труды: Т. I. - М.: Наука, 1964.

30. Белый Ю.А. Иоганн Кеплер (1571-1630). - М.: Наука, 1971.

31. Kepler I. Gesammelte Werke... - München, 1937, Bd. IV.

32. Correspondense of Scientific Men of the 17th Gentry, 1841, letter XX.

33. Scheiner Chr. Described and illustrated in Scheiners. - In: «Rosa Ursina sive sol etc. Bracciano», 1630.