Как работает наш мозг

Касательно работы мозга существует множество противоречивых научных теорий и гипотез. Эмоции решения у человека зачастую противостоят друг другу. Эмоции появляются у человека ввиду природы мозга, запрограммированного на систему инстинктов. Так, при виде положительных стимулов - вкусной еды, денег как источника удовольствия, привлекательного представителя противоположного пола - мозг вырабатывает сигналы и отправляет их гормональной системе. Вырабатываются химические вещества, влияющие на реакцию человека - он может начать испытывать страх, радость, или восхищение.

Работы по эмоциональному интеллекту имеют тем больший вес, что могут применяться в бизнесе, маркетинге и политике. Многие решения человек применяет подсознательно. Причем это не всегда плохо. В заднем отделе мозга формируются паттерны: шаблоны человеческого поведения в испытанных ранее ситуациях.

IQ: рациональное мышление

Считается, что левое отвечает за рациональные действия. Поэтому левое полушарие называют аналитическим, а правое - творческим. В полной мере данная гипотеза даже не могла оправдаться. Мозг человека гораздо более сложен. Он разделен на тысячи областей, каждая из которых отвечает за одну из возможных функций. Имеется и ряд «пустых» областей, функциональность которых развивается в зависимости от потребностей личности. Тем не менее большинство ученых к выводу о том, что большая часть аналитических участков мозга действительно находится в левом полушарии.

Основа рационального мышления - приверженность знаковым системам. Отделы левого полушария активизируются при чтении, и решении математических задач. Какая бы то ни было письменность не свойственна животным, их левые полушария задействованы в меньшей степени, чем в мозге человека. Исключение составляют высшие млекопитающие (дельфины, киты).

Связь между полушариями

Связь между полушариями мозга и отдельными участками образуется за счет нейронных сетей. Это своего рода провода, передающие электрические мозговые импульсы с невообразимой скоростью. Мышление человека (мыслительный вектор, скорость, черты характера) напрямую зависит от наличия сформированных нейронных связей.

Считается, что люди, обладающие проявлениями гениальности, имеют огромное количество устойчивых связей нейронов и синапсов (еще один вид соединительных «проводов») между левым и правым полушариями. Это позволяет им анализировать определенную знаковую информацию, творчески ее интерпретировать и преподносить в переработанном виде в другой знаковой системе. Развитию устойчивых нейронных связей способствуют привычки. Вот почему многие гении занимались любимым делом уже в раннем возрасте - сформировавшиеся привычки способствовали укреплению нейронных связей, которые позволяли им творить произведения мирового масштаба.

Человеческий мозг – самый сложный биологический механизм, регулирующий и координирующий все жизненные функции. Как устроен мозг и на сколько процентов он задействован. Каковы механизмы его работы и как мы можем помочь мозгу работать эффективнее.

Человеческий мозг называют самым сложным биологическим механизмом, который создала природа. Он регулирует и координирует все жизненные функции человека и контролирует его поведение.

С его работой связаны все мысли и чувства, желания и ощущения. Если мозг перестает функционировать, человек впадает в вегетативное состояние: утрачивает способность что-либо чувствовать, на что-либо реагировать и способность действовать, одним словом – .

Дать полный ответ, как устроен мозг и как он работает, невозможно. Загадки начинаются с вопроса, как он возник, и заканчиваются вопросами о его связях с невидимым тонким миром Вселенной, которые влияют на глубины человеческого подсознания. Его потенциал вряд ли будет когда-либо раскрыт полностью. Так сложилось, что этот совершенный механизм должен изучать себя сам.

Как устроен человеческий мозг?

Мозг взрослого человека в среднем составляет 1,5 кг – это всего лишь 2% от общего веса тела. (Однако доказано, что уровень ума и интеллекта не зависит от веса мозга.) Его собственные энергетические запасы очень малы, поэтому он очень зависит от снабжения кислородом. Мозг весь пронизан не одной сотней тысяч кровеносных сосудов – таким образом он поглощает 20% кислорода, получаемого легкими.

Если вдруг человеку по каким-то причинам приходится голодать, его мозг страдает в последнюю очередь, поскольку большая часть питательных веществ направляется на поддержание его работы. При потере массы тела на 50% мозг теряет всего 15% веса.

Эти факты говорят о том, что мозг в организме человека занимает привилегированное положение. Он внешнего мира его нежные ткани защищает черепная коробка, внутри же от сотрясений его оберегает спинномозговая жидкость.

Мозг покрыт тонким серым слоем с бороздками и извилинами – это кора головного мозга. Здесь находится его мыслительный центр. Кора представляет собой нервную ткань, состоящую из нескольких миллиардов нейронов, благодаря которым осуществляются прямые и обратные связи – информация от органов чувств поступает в кору, а после обработки отсылается обратно в виде команд для действия разных участков тела.

70% мозга составляют большие полушария – правое и левое. Они соединены мозолистым телом, благодаря которому могут обмениваться информацией. Правое и левое полушария симметричны и представляют собой как бы 2 мозга, каждый из которых руководит своими процессами, и в то же время они помогают друг другу.

Правое и левое полушарие состоят из лобной, теменной, затылочной и височной доли. В каждой из них находятся центры, отвечающие за определенную деятельность: височная – за слух, и речь; затылочная – за зрительные ощущения, лобная – за двигательную активность, теменная – за телесные ощущения. Под затылочными долями полушарий находится мозжечок, отвечающий за координацию движений и равновесие тела. А под корой головного мозга – таламус, контролирующий внимание и бодрствование, и гипоталамус, регулирующий процессы саморегуляции организма.

Это лишь самое поверхностное описание такого сложнейшего органа, как человеческий мозг. И если с точки зрения физиологии он изучен далеко не полностью, то о том, как происходят в нем мыслительные процессы, известно еще меньше. Людей волнует вопрос: является ли духовная жизнь человека, его мысли, чувства и эмоции следствием физических и химических процессов, происходящих в нем, или это что-то другое – еще не изученное и таинственное

Любопытно, что еще в 19 в. некий архимандрит Борис в своем сочинении «О невозможности чисто физиологического объяснения душевной жизни человека» утверждал, что несмотря на то, что жизнь души является результатом работы мозга, психические явления «имеют свое подлинное бытие вне головного мозга». Однако каким образом, «сие нам неизвестно». С ним соглашаются и люди науки, например физиолог из Англии Ч.Шеррингтон. Он считал, что мысль рождается за пределами материи, но поскольку она возникает в головах людей, они думают, что произвели ее сами.

На сколько процентов работает мозг человека

Ученные не однократно пытались оценить, на сколько работает мозг человека, и в результате их исследований, в прошлом веке, возникло множество ложных теорий. По одной из них считалось, что человек использует только 3% от его потенциала, в то время как другие утверждали, что 15-20 процентов.

Миф о 10% мозга

В 1936 году в предисловии к книге « » американский писатель Лоуэлл Томас написал «Профессор Уильям Джеймс говорит, что люди используют своих умственных способностей».

Нейробиолог Барри Гордон характеризует миф как «смехотворно ошибочный», добавляя: «мы используем практически все части мозга, и они активны практически постоянно». Барри Бейерштейн приводит аргументы, опровергающие миф о десяти процентах:

  1. Исследования повреждений мозга: если 90% мозга обычно не используется, повреждения этих частей не должно влиять на его работу. Практика же показывает, что почти не существует областей, которые могут быть повреждены без потери способностей. Даже небольшие повреждения могут приводить к огромным последствиям.
  2. Мозг обходится телу довольно дорого в плане потребления кислорода и питательных веществ. Он может требовать до 20% всей энергии тела, при этом составляя лишь 2% массы. Если бы 90% были не нужны, люди с меньшим, более эффективным мозгом имели бы эволюционное преимущество – остальным сложнее было бы проходить естественный отбор. Отсюда также очевидно, что такой большой мозг не мог бы даже появиться, если бы в нём не было потребности.
  3. Сканирование: технологии вроде позитронно-эмиссионной томографии и функциональной магнитно-резонансной томографии позволяют наблюдать работу живого мозга. Они показали, что даже во время сна в мозге имеется некая активность. «Глухие» зоны появляются лишь в случае сильных повреждений.
  4. Локализация функций: вместо того, чтобы быть единой массой, мозг делится на отделы, которые выполняют различные функции. На определение функций каждого отдела были потрачены многие годы, и отделений, не выполняющих никаких функций, обнаружено не было.
  5. Микроструктурный анализ: при регистрации деятельности отдельных нейронов учёные наблюдают за жизнедеятельностью отдельно взятой клетки. Если бы 90% мозга бездействовала, это сразу бы заметили.
  6. Нейронные заболевания: клетки мозга которые не используются, имеют тенденцию вырождаться. Следовательно, если 90% мозга были бы неактивны, то вскрытие мозга взрослого человека показало бы масштабное вырождение.

Другим аргументом является то, что большой размер мозга требует увеличения черепа, что повышает риск смерти при рождении. Такое давление обязательно избавило бы популяцию от лишнего мозга. Таким образом получается, что мы используем 100% мозга в целом, но для каждой задачи используется свой участок и намного меньше процентов.

Как начинается мыслительная деятельность?

Пытаются разобраться, как работает мозг человека с точки зрения происходящих в нем мыслительных процессов, и современные ученые. Ведь зная, как мозг думает, можно понять, как стимулировать его работу. Итак, чтобы мозг начал думать, в него должна поступить информация, то есть он должен иметь то, о чем думать. Таким образом, начать мыслить означает начать оперировать имеющейся информацией.

Как информация поступает в мозг?

1. Первоначальная информация является сенсорной – она воспринимается от органов чувств, и это то, что мы видим, слышим и ощущаем. Чем сильнее внимание будет сконцентрировано на сенсорных ощущениях, тем больше информации поступит в память. А внимание усиливается, когда человеку что-то интересно. Например, если он постоянно ходит на работу одной и той же дорогой, его мозг как бы уходит в спячку и задействован примерно на 5%. Если же он меняет маршрут, мозг «просыпается», чтобы воспринять новую информацию

2. Такой сенсорный вид информации хранится в памяти совсем недолго, ведь ее поступает довольно много. Мозг должен отделить более важную от менее важной, чтобы более важную переместить из краткосрочной памяти в долгосрочную. Для этого надо, чтобы разные свойства объекта объединились и сложились в образ. Например, чтобы запомнить имя нового знакомого или его телефон, необходимо услышанную и увиденную информацию связать с его внешностью, обстоятельствами встречи и пр.

4. Накопленный запас образов и понятий, наделенных личностным смыслом, позволяет осуществлять мыслительные операции, позволяющие проникать вглубь проблемы и решать определенные задачи.

5. Формой мышления является суждение (или высказывание) – мысль о предмете, в которой путем отрицания или утверждения раскрываются его признаки.

6. На основе суждений человек делает умозаключение. Например, увидев утром на улице лужи, он приходит к выводу, что ночью шел дождь.

Как помочь мозгу работать эффективнее?

1. Переработку всей информации: ее получение, проведение и передачу другим клеткам осуществляют нейроны, находящиеся в коре головного мозга. У новорожденного количество нейронов больше, чем у взрослого, но несмотря на это, он практически не умеет ни слышать, ни видеть.

Его глаза видят свет, но его мозг этого не понимает, потому что еще не образовались связи с другими нейронами, чтобы информация поступила дальше – в кору больших полушарий. По мере их образования ребенок будет различать сначала свет, затем силуэты, цвета и пр. Чем разнообразнее и ярче будут предметы вокруг него, тем быстрее образуются такие связи и тем лучше будет работать та часть мозга, которая связана со зрением.

Любопытно, что если по какой-то причине (например, из-за травмы или заболевания) ребенок не будет видеть во младенчестве, то в дальнейшем связи между нейронами в его мозге никогда не образуются и он так и не научится видеть. Его глаза будут здоровые, он будет видеть свет, но останется слепым, потому что нейронные связи, обеспечивающие поступление сигнала в мозг, могут образовываться почти всегда только в детстве.

Это же относится и к слуху и, в меньшей мере, к другим способностям: осязанию, обонянию, способности говорить, ориентироваться и др. То есть, очевидно, существует определенный период, когда образуются нейронные связи, необходимые для развития зрения, слуха и пр.

Таким образом, чтобы заставить мозг эффективно работать, его нужно тренировать с самого детства. Чем мозг моложе, тем он восприимчивей. И чем меньше его нагружать, тем хуже он будет работать. Мы все знаем, что если не тренировать мышцы, то они со временем станут дряблыми и начнут атрофироваться. То же касается и мозга: если его перестать нагружать, клетки, отвечающие за мыслительные процессы, начнут отмирать. У людей, которые тренируют свой мозг, ухудшение его работы отмечается лишь в глубокой старости.

2. Не стоит забывать и о питании – мозг нуждается в продуктах, содержащих жирные кислоты Омега-3 (это жирная морская рыба – лосось, семга, скумбрия, грецкие орехи) (см. « »). А вредны для него продукты, в состав которых входят трансжиры (маргарин, чипсы, крекеры, пирожные и т. п.).

История компьютерных наук в целом сводится к тому, что учёные пытаются понять, как работает человеческий мозг, и воссоздать нечто аналогичное по своим возможностям. Как именно учёные его исследуют? Представим, что в XXI веке на Землю прилетают инопланетяне, никогда не видевшие привычных нам компьютеров, и пытаются исследовать устройство такого компьютера. Скорее всего, они начнут с измерения напряжений на проводниках, и обнаружат, что данные передаются в двоичном виде: точное значение напряжения не важно, важно только его наличие либо отсутствие. Затем, возможно, они поймут, что все электронные схемы составлены из одинаковых «логических вентилей», у которых есть вход и выход, и сигнал внутри схемы всегда передаётся в одном направлении. Если инопланетяне достаточно сообразительные, то они смогут разобраться, как работают комбинационные схемы - одних их достаточно, чтобы построить сравнительно сложные вычислительные устройства. Может быть, инопланетяне разгадают роль тактового сигнала и обратной связи; но вряд ли они смогут, изучая современный процессор, распознать в нём фон-неймановскую архитектуру с общей памятью, счётчиком команд, набором регистров и т.п. Дело в том, что по итогам сорока лет погони за производительностью в процессорах появилась целая иерархия «памятей» с хитроумными протоколами синхронизации между ними; несколько параллельных конвейеров, снабжённых предсказателями переходов, так что понятие «счётчика команд» фактически теряет смысл; с каждой командой связано собственное содержимое регистров, и т.д. Для реализации микропроцессора достаточно нескольких тысяч транзисторов; чтобы его производительность достигла привычного нам уровня, требуются сотни миллионов. Смысл этого примера в том, что для ответа на вопрос «как работает компьютер?» не нужно разбираться в работе сотен миллионов транзисторов: они лишь заслоняют собой простую идею, лежащую в основе архитектуры наших ЭВМ.

Моделирование нейронов

Кора человеческого мозга состоит из порядка ста миллиардов нейронов. Исторически сложилось так, что учёные, исследующие работу мозга, пытались охватить своей теорией всю эту колоссальную конструкцию. Строение мозга описано иерархически: кора состоит из долей, доли - из «гиперколонок» , те - из «миниколонок» … Миниколонка состоит из примерно сотни отдельных нейронов.

По аналогии с устройством компьютера, абсолютное большинство этих нейронов нужны для скорости и эффективности работы, для устойчивости ко сбоям, и т.п.; но основные принципы устройства мозга так же невозможно обнаружить при помощи микроскопа, как невозможно обнаружить счётчик команд, рассматривая под микроскопом микропроцессор. Поэтому более плодотворный подход - попытаться понять устройство мозга на самом низком уровне, на уровне отдельных нейронов и их колонок; и затем, опираясь на их свойства - попытаться предположить, как мог бы работать мозг целиком. Примерно так пришельцы, поняв работу логических вентилей, могли бы со временем составить из них простейший процессор, - и убедиться, что он эквивалентен по своим способностям настоящим процессорам, даже хотя те намного сложнее и мощнее.

На рисунке, приведённом чуть выше, тело нейрона (слева) - небольшое красное пятнышко в нижней части; всё остальное - дендриты , «входы» нейрона, и один аксон , «выход». Разноцветные точки вдоль дендритов - это синапсы , которыми нейрон соединён с аксонами других нейронов. Работа нейронов описывается очень просто: когда на аксоне возникает «всплеск» напряжения выше порогового уровня (типичная длительность всплеска 1мс, уровень 100мВ), то синапс «пробивается», и всплеск напряжения переходит на дендрит. При этом всплеск «сглаживается»: вначале напряжение за 5..20мс растёт до порядка 1мВ, затем экспоненциально затухает; таким образом, длительность всплеска растягивается до ~50мс.

Если несколько синапсов одного нейрона активизируются с небольшим интервалом по времени, то «разглаженные всплески», возбуждаемые в нейроне каждым из них, складываются. Наконец, если одновременно активны достаточно много синапсов, то напряжение на нейроне поднимается выше порогового уровня, и его собственный аксон «пробивает» синапсы связанных с ним нейронов.

Чем мощнее были исходные всплески, тем быстрее растут разглаженные всплески, и тем меньше будет задержка до активизации следующих нейронов.

Кроме того, бывают «тормозящие нейроны», активация которых понижает общее напряжение на связанных с ним нейронах. Таких тормозящих нейронов 15..25% от общего числа.

У каждого нейрона тысячи синапсов; но в любой момент времени активны не больше десятой части всех синапсов. Время реакции нейрона - единицы мс; такого же порядка задержки на распространение сигнала вдоль дендрита, т.е. эти задержки оказывают существенное влияние на работу нейрона. Наконец, пару соседних нейронов, как правило, связывает не один синапс, а порядка десятка - каждый с собственным расстоянием до тел обоих нейронов, а значит, с собственной длительностью задержки. На иллюстрации справа два нейрона, изображённые красным и синим, связаны шестью синапсами.

У каждого синапса своё «сопротивление», понижающее входящий сигнал (в примере выше - со 100мВ до 1мВ). Это сопротивление динамически подстраивается: если синапс активизировался сразу перед активацией аксона - то, видимо, сигнал с этого синапса хорошо коррелирует с общим выводом, так что сопротивление понижается, и сигнал будет вносить больший вклад в напряжение на нейроне. Если же синапс активизировался сразу после активации аксона - то, видимо, сигнал с этого синапса не имел отношения к активации аксона, так что сопротивление синапса повышается. Если два нейрона связаны несколькими синапсами с разной длительностью задержки, то такая подстройка сопротивлений позволяет выбрать оптимальную задержку, или оптимальную комбинацию задержек: сигнал начинает доходить именно тогда, когда от него больше всего пользы.

Таким образом, модель нейрона, принятая исследователями нейронных сетей - с единственной связью между парой нейронов и с мгновенным распространением сигнала от одного нейрона к другому - весьма далека от биологической картины. Кроме того, традиционные нейронные сети оперируют не временем отдельных всплесков, а их частотой : чем чаще всплески на входах нейрона, тем чаще будут всплески на выходе. Те детали устройства нейрона, которые отброшены в традиционной модели - существенны или несущественны они для описания работы мозга? Нейробиологи накопили огромную массу наблюдений об устройстве и поведении нейронов - но какие из этих наблюдений проливают свет на общую картину, а какие - лишь «детали реализации», и - как и предсказатель переходов в процессоре - не влияют ни на что, кроме эффективности работы? Джеймс считает, что именно временны́е характеристики взаимодействия между нейронами и позволяют приблизиться к пониманию вопроса; что асинхронность так же важна для работы мозга, как синхронность - для работы ЭВМ.

Ещё одна «деталь реализации» - ненадёжность нейрона: с некоторой вероятностью он может активизироваться спонтанно, даже если сумма напряжений на его дендритах не достигает порогового уровня. Благодаря этому, «обучение» колонки нейронов можно начинать с любого достаточно большого сопротивления на всех синапсах: вначале никакая комбинация активаций синапсов не будет приводить к активации аксона; затем спонтанные всплески приведут к тому, что понизится сопротивление синапсов, которые активизировались незадолго до этих спонтанных всплесков. Таким образом нейрон начнёт распознавать конкретные «паттерны» входных всплесков. Что самое важное, паттерны, похожие на те, на которых нейрон обучался, - тоже будут распознаваться, но всплеск на аксоне будет тем слабее и/или позднее, чем меньше нейрон «уверен» в результате. Обучение колонки нейронов получается намного эффективнее, чем обучение обычной нейронной сети: колонке нейронов не нужен контрольный ответ для тех образцов, на которых она обучается - фактически, она не распознаёт , а классифицирует входные паттерны. Кроме того, обучение колонки нейронов локализовано - изменение сопротивления синапса зависит от поведения лишь двух соединённых им нейронов, и никаких других. В результате этого, обучение приводит к изменению сопротивлений вдоль пути следования сигнала, тогда как при обучении нейронной сети веса изменяются в обратном направлении: от нейронов, ближайших к выходу - к нейронам, ближайшим ко входу.

Например, вот колонка нейронов, обученная распознавать паттерн всплесков (8,6,1,6,3,2,5) - значения обозначают время всплеска на каждом из входов. В результате обучения, задержки настроились на точное соответствие распознаваемому паттерну, так что напряжение на аксоне, вызываемое правильным паттерном, получается максимально возможным (7):

Та же самая колонка отреагирует на похожий входной паттерн (8,5,2,6,3,3,4) меньшим всплеском (6), причём напряжение достигает порогового уровня заметно позднее:

Наконец, тормозящие нейроны могут использоваться для реализации «обратной связи»: например, как на иллюстрации справа, - подавлять повторные всплески на выходе, когда вход длительное время остаётся активным; или подавлять всплеск на выходе, если он слишком задерживается по сравнению со входными сигналами, - чтобы сделать классификатор более «категоричным»; или, в нейросхеме для распознавания паттернов, разные колонки-классификаторы могут быть связаны тормозящими нейронами, чтобы активация одного классификатора автоматически подавляла все остальные классификаторы.

Распознавание изображений

Для распознавания рукописных цифер из базы MNIST (28x28 пикселей в оттенках серого) Джеймс из колонок-классификаторов, описанных выше, собрал аналог пятислойной «свёрточной нейросети» . Каждая из 64 колонок в первом слое обрабатывает фрагмент 5х5 пикселей из исходного изображения; такие фрагменты перекрываются. Колонки второго слоя обрабатывают по четыре выхода из первого слоя каждая, что соответствует фрагменту 8х8 пикселей из исходного изображения. В третьем слое всего четыре колонки - каждой соответствует фрагмент из 16х16 пикселей. Четвёртый слой - итоговый классификатор - разбивает все изображения на 16 классов: класс назначается в соответствии с тем, который из нейронов активизируется первым. Наконец, пятый слой - классический перцептрон, соотносящий 16 классов с 10 контрольными ответами.

Классические нейросети достигают на базе MNIST точности 99.5% и даже выше; но по утверждению Джеймса, его «гиперколонка» обучается за гораздо меньшее число итераций, благодаря тому, что изменения распространяются вдоль пути следования сигнала, а значит, затрагивают меньшее число нейронов. Как и для классической нейросети, разработчик «гиперколонки» определяет только конфигурацию соединений между нейронами, а все количественные характеристики гиперколонки - т.е. сопротивление синапсов с разными задержками - приобретаются автоматически в процессе обучения. Кроме того, для работы гиперколонки требуется на порядок меньшее число нейронов, чем для аналогичной по возможностям нейросети. С другой стороны, симуляция таких «аналоговых нейросхем» на электронном компьютере несколько затрудняется тем, что в отличие от цифровых схем, работающих с дискретными сигналами и с дискретными интервалами времени - для работы нейросхем важны непрерывность изменения напряжений и асинхронность нейронов. Джеймс утверждает, что шага симуляции в 0.1мс достаточно для корректной работы его распознавателя; но он не уточнял, сколько «реального времени» занимает обучение и работа классической нейросети, и сколько - обучение и работа его симулятора. Сам он давно на пенсии, и свободное время он посвящает совершенствованию своих аналоговых нейросхем.

Мозг наиболее сложно устроенный орган человека. Ведь он отвечает за работу всех органов, а также за множество сложнейших процессов, таких как память, мышление, чувства, речь. Кроме того, мозг человека отвечает и за сознание. Давайте разберемся, как работает мозг.

Мозг является центральным органом нервной системы. Расположен он в черепной коробке, которая защищает его от повреждений и воздействия температуры. У взрослого человека мозг весит в среднем 1,4 кг, внешне он похож на большой грецкий орех. Состоит мозг из серого и белого веществ, которые состоят из нервных клеток и нервных волокон. Нейроны подают и принимают электрические сигналы всем органам тела по сети нервных окончаний. Головной и спиной мозг, а также нервные окончания по всему телу составляют нервную систему человека.

Анатомически мозг состоит из трех главных частей – ствол мозга, полушария, мозжечок. Кроме того, в мозге есть железы внутренней секреции, такие как таламус и гипоталамус. Разберём функции и строение каждой части, чтобы лучше разобраться с тем, как работает мозг человека.

Полушария мозга

Полушария головного мозга являются его самой большой частью. Они составляют примерно 90% всего объема. Полушария делят мозг на две примерно равные части, соединенные плотной перемычкой – мозолистым телом. По структуре полушария состоят из серого и белого веществ. Серое вещество составляет поверхность мозга и состоит из сложно устроенных нервных клеток, которые генерируют электрические импульсы. А белое вещество, которое находится внутри полушарий, состоит из нервных волокон. Они передают сигналы по всему телу.

Сложное устройство полушарий головного мозга позволяет им отвечать за множество функций организма человека, большая часть которых относится к высшей психической деятельности, например, память, мышление и т.п. Физиологически это представляет собой чёткое разделение на зоны, которые внешне никак не заметы. Каждая зона отвечает за определенные функции человека. Подробно ознакомиться с тем, за что отвечают полушария, вы можете в одной из наших статей – " ".

Мозжечок

Мозжечок находится в задней части мозга, чуть ниже затылка. Мозжечок получает двигательные сигналы от полушарий, после чего сортирует их, конкретизирует и посылает сигналы в определенные мышцы или сухожилия. Мозжечок отвечает за движения, как отдельных мышц, так и за общую плавность и координацию движений человека.

Ствол мозга

Ствол мозга находится у основания и соединяет головной мозг со спинным. Ствол мозга, отвечает за жизненно важные автоматические процессы, такие как сердцебиение, пищеварение, температура тела, дыхание и т.п.

Гипоталамус и таламус

Гипоталамус - железа внутренней секреции, которая отвечает за множество сложных функций и проявлений человека. К примеру, он контролирует голод, сон, жажду, а также сильные эмоции – гнев, радость, страх. Расположен гипоталамус на вершине ствола мозга.

Таламус же в свою очередь, является координатором всех желез человека. Имея размер не больше, чем горошина, таламус регулирует выделение всех гормонов в организме.

Как работает мозг: внутренний процесс

На первый взгляд работа мозга кажется предельно простой. Нервные импульсы, поступают в одно полушарие, где они считываются и перерабатываются. Затем, они посылаются в нужную часть организма. Кстати говоря, сигналы, идущие с правой стороны тела, посылаются в левое полушарие.

В общем, можно сказать, что мозг – орган, контролирующий все процессы тела. С помощью нейронной сети он руководит телом, подобно дирижеру, указывая, что и какому органу нужно сделать.

Нейронная сеть человека, состоит из нервных клеток – нейронов. Они в своем строении имеют несколько входов – дендритов, и один выход – аксон. Можно сказать, что нейрон получает множество сигналов, суммирует их и выдает один общий выходной сигнал, который и передается дальше. Нейроны человека имеют способность «обучаться» - в ходе жизни, они могут изменять свою пороговую сумму сигналов. Когда нейроны увеличивают сумму сигналов - происходит обучение человека, а когда сумма сигналов уменьшается, у человека происходит забывание или потеря навыка.

Теперь вы знаете, как работает мозг. Считается, что мозг во много раз мощнее, чем любой из созданных компьютеров. В человеческом мозге порядка 100 млрд. нервных клеток, которые постоянно умирают и появляются, а также имеют свойство развиваться.

Для того чтобы мозг постоянно развивался, ему необходимо работать. Практические советы для этого вы можете найти в одной из наших статей - "

«Я знаю всё, но только не себя», – писал французский поэт Франсуа Вийон… пожалуй, под этими словами мог бы подписаться каждый из нас, ведь орган, в котором и сосредоточено наше «Я», до сих пор не раскрыл нам всех своих тайн. Этот орган – головной мозг.

Поначалу на него вообще не обращали особого внимания – так, Гиппократ считал мозг железой, удаляющей избыток жидкости из организма, а Аристотель отводил ему роль «холодильника». Но уже в античном мире появляется идея связи головного мозга с психикой (Алкмеон, Герофил). Предстояло пройти огромный путь длиной в множество веков, чтобы приоткрыть завесу тайны над деятельностью мозга.

Прежде всего следует отвергнуть заблуждение, которое в наши дни не повторяет только ленивый: якобы мы используем наш мозг только на 5%, а вот если научимся использовать остальные 95% – тогда… что «тогда» – зависит от фантазии говорящего (или автора методики, способствующей «раскрытию» этих самых 95% – за соответствующую плату, разумеется). Эволюция – строгий «контролёр», ничто лишнее в ней не выживает. Единственное исключение в этом плане – рудиментарные органы, но они бывают редуцированными (вспомните маленькие глазки крота). Представить же, что орган, который по сложности и функциональности превосходит аналогичные органы эволюционных предков, был рудиментарным на 95%, совершенно невозможно. Пресловутые 5% – это сознание, остальное же – отнюдь не мёртвый груз, это всё тоже занято работой – помимо сознания (например, управление деятельностью внутренних органов).

Как и все органы, мозг состоит из клеток. Клетки эти – нейроны – особого рода, непохожие ни на какие другие. От маленького тела отходят многочисленные отростки – один длинный (аксон) и множество коротких, ветвящихся (дендриты). Дендриты проводят сигналы к нейрону от других нейронов, аксон – наоборот. При этом аксон у человека может достигать длины… в 1 метр (у крупных животных – например, китов – бывают и ещё длиннее), и это при том, что сами по себе нервные клетки – одни из самых мелких. Достаточно сложно проследить под микроскопом извилистый путь такого отростка, и потому так медленно продвигалось изучение взаимодействия нервных клеток. Ещё одна их особенность заключается в том, что главной «рабочей» частью нейрона является… оболочка, функция которой у всех клеток обычно сводится к защите от внешних воздействий, у нейронов же именно она генерирует электрический потенциал, который и составляет возбуждение нейрона, «несёт информацию».

Как лес состоит не только из деревьев, так в мозге есть не только нейроны – их окружают глиальные клетки. Функции их многообразны: они служат опорой для отростков нервных клеток, проводят к ним из крови питательные вещества, защищают их.

Клетки головного мозга складываются в множество отделов, различающихся по своему строению и функциям, а также по эволюционному «возрасту». Основных отделов – пять: продолговатый, задний, средний, промежуточный и передний. Продолговатый мозг вместе со средним и варолиевым мостом (частью заднего мозга) образуют мозговой ствол.

Продолговатый мозг управляет нашей жизнедеятельностью: дыхание, пищеварение, работа сердца, защитные рефлексы (такие, как чихание и кашель). Вот почему если геморрагический инсульт поразил одно из больших полушарий, что-то ещё можно сделать (человек, возможно, будет инвалидом – но будет жить), если же кровоизлияние «ударило» в ствол – надежды практически нет.

Средний мозг, который тоже входит в ствол, отвечает за ориентировочный рефлекс, позы, регулирует жевание и глотание и обрабатывает первичную информацию, поступающую от зрения и слуха.

За варолиевым мостом, передающим сигналы от спинного мозга к головному находится образование, внешне напоминающее «мозг в миниатюре», так он и называется – мозжечок 9вместе они и составляют задний мозг). Его назначение – корректировать информацию, поступающую от двигательных центров коры головного мозга, т.е. регулировать произвольные движения. Человек с поражённым мозжечком ходит, сильна шатаясь, а с закрытыми глазами вообще падает, может стоять, только широко расставив ноги, координация движений нарушается, страдает и речь (это ведь тоже произвольные движения челюстей и языка) – ударения расставляются не по смыслу, а через равные промежутки времени.

Переходим к промежуточному мозгу. Это довольно сложное образование, включающее в себя таламический мозг, гипоталамус и третий желудочек.

Таламический мозг кроме собственно таламуса включает в себя эпиталамус и метаталамус. Таламус – парное яйцевидное образование, иначе называемое зрительными буграми; здесь находятся четыре ядра (скопления нейронов), через одно проходит зрительная информация, через другое – слуховая, третье – тактильная, четвёртая – связанная с чувством равновесия. Такой вот «информационный центр». Если он страдает – человек «теряет» информацию о происходящих событиях, сразу забывая всё происходящие, хотя память как таковая не страдает – то, что было до болезни, человек помнит (это называется антероградной амнезией). Основная часть эпиталамуса – шишковидное тело, или эпифиз. Собственно, это не отдел мозга как таковой, а железа внутренней секреции, но железа необычная – в ней тесно переплетаются железистые и нервные клетки. Примечательно, что у низших позвоночных эпифиз по строению напоминает… глаз. Так что если кто ищет пресловутый «третий глаз» – так это он. «Просветлению» эпифиз вряд ли поможет, но вырабатывает ряд гормонов (мелатонин, серотонин и др.), выполняя множество важных функций: торможение полового развития и поведения, роста, развития опухолей. В метаталамусе же расположены подкорковые центры зрения с слуха.

Гипоталамус, расположенный под таламусом – тоже весьма сложное образование. Здесь находятся сосцевидные тела (обонятельные центры), здесь пересекаются зрительные нервы, обеспечивая нам бинокулярное зрение, здесь же располагается серый бугор, регулирующий обмен веществ, а также гипофиз… тот самый гипофиз, манипуляциями с которым профессор Преображенский превратил Шарика в Шарикова! Тут Булгаков, конечно, погрешил против истины – и, пожалуй, уместнее вспомнить компрачикосов из романа «Человек, который смеётся». «Коронный номер» таких компрачикосов – это как раз удаление гипофиза: ребёнок перестаёт расти, и получается карлик, которого можно выгодно продать какому-нибудь аристократу в качестве «живой игрушки». Впрочем, такое бывает и без вмешательства человека – при некоторых заболеваниях, когда гипофиз вырабатывает недостаточно гормона роста, или наоборот – вырабатывает слишком много, тогда мы имеем дело с гигантизмом или акромегалией (расширением и утолщением костей). Регулирование роста – не единственная «работа» гормонов гипофиза: это и жировой обмен, и деятельность надпочечников и щитовидной железы, а у женщин – ещё и гормоны, связанные с менструальным циклом.

Помимо всего описанного, промежуточный мозг управляет циркадными ритмами (чередованием бодрствования и сна), терморегуляцией. Здесь же находятся центры голода, жажды и насыщения, а также центры удовольствия и боли (их ещё образно именуют «раем» и «адом»). Когда крысам вводили в такой «рай» электроды и раздражали этот центр электрическим током, животные потом преодолевали изрядное расстояние по железной решётке под током, чтобы снова получить такое удовольствие (для получения пищи они были «согласны» преодолеть вдвое меньшее расстояние), а когда их самих «научили» подавать импульс нажатием на педаль, крысы очень быстро превращались в «электрических наркоманов», даже переставая есть… остаётся только радоваться, что такая «технология удовольствия» не получила распространения среди людей: ведь это было бы дешевле (а значит – доступнее), чем героин!

Переходим к самой крупной у человека части мозга – переднему мозгу. У нашего вида он представлен большими полушариями. Полушария эти состоят из белого вещества, внутри которого базальные ганглии – скопления серого вещества, объединяющиеся в т.н. полосатое тело (названное так потому, что в нём чередуются белое и серое вещества). Оно регулирует мышечный тонус, некоторые поведенческие реакции, участвует в формировании условных рефлексов. Поражение полосатого тела приводит к такому заболеванию, как хорея – больной совершает неконтролируемые, непроизвольные движения, напоминающие обычные, но преувеличенные и неуместные. Именно поэтому такую болезнь не всегда просто распознать, особенно у детей: гримасничает, кривляется, тетрадь исчеркал… да он просто плохо себя ведёт! И невдомёк родителям, что ребёнка надо отвести к неврологу…

Но если мозг – это, выражаясь словами В.И.Ленина, высшая форма организации материи, то «венец творения», несомненно – кора больших полушарий, образованная серым веществом. Самая молодая в эволюционном отношении, самая сложная часть нашего мозга – и самая хрупкая. Именно она погибает первой при кислородном голодании. Здесь формируются условные рефлексы, лежащие в основе высшей нервной деятельности, обеспечивающей взаимоотношения организма с окружающим миром. Мышление и прочие сложные проявления нашей психики – это образование временных нервных связей в коре головного мозга.

Полушарий два, и они вовсе не являются «двойниками» друг друга, так что можно сказать, что у нас два мозга. Обычно это не очевидно, поскольку они работают вместе, будучи соединены т.н. мозолистым телом, но вот если мозолистое тело рассечь… это применяется при некоторых формах эпилепсии. Предотвратить припадки это помогает, но вот с больными – особенно в первое время после операции – происходят странные вещи. Один такой пациент никак не мог надеть брюки, поскольку правой рукой подтягивал их, а левой спускал; другой правой рукой открывал газ и зажигал спичку, а левая в это время газ закрывала; третий в одной рукой схватил жену и принялся её трясти – а другой пытался усмирить свою «агрессивную» руку… словом, каждое полушарие начинало «жить своей жизнью», вплоть до того, что человек может в полном смысле играть в шахматы сам с собой (правда, каждое полушарие в отдельности превращалось в довольно посредственного игрока).

Как «работает» каждое полушарие в отдельности, можно наблюдать при электросудорожной терапии, применяемой при некоторых тяжёлых заболеваниях мозга – при этом полушарие, через которое пропущен ток, временно отключается. Первое, что страдает при отключении левого полушария – это речь. Поначалу пациент вообще ничего не пытается сказать и не понимает. Лишь с постепенным восстановлением функций он начинает откликаться на своё имя, потом понимать обращённую речь, называть хорошо знакомые предметы… Пациент же с отключённым правым полушарием, напротив, говорит без умолку. При деактивации левого полушария человек плохо запоминает слова и хорошо – картинки, при деактивации правого – наоборот. Такая же противоположность наблюдается в отношении эмоций: человек с отключённым правым полушарием находится в приподнятом настроении, с отключённым левым – угнетён и раздражителен… Так что можно с уверенностью сказать, что все мы – «двуликие Янусы»»: в нашей черепной коробке спрятаны два совершенно разных мозга.

Но разделение на полушария – это ещё не всё, кора делится на доли, в которых тоже локализуются разные функции. Во многом пролить свет на эти функции помогли черепно-мозговые травмы, когда можно наблюдать, что именно нарушается при повреждении той или иной доли. Лобные доли связаны со сложными формами поведения, процессами мышления, двигательной организацией речи и письма; теменные создают общий образ предмета, объединяя разные его признаки, височные доли связаны с языковыми навыками и долговременной памятью и др.

Конечно, это «взгляд с высоты птичьего полёта» – в действительности всё намного сложнее и многообразнее… но и сегодня нам известно далеко не всё о мозге, его устройстве и работе.